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PURPOSE

This final report is prepared in accordance with the requirements of contract NASw-572,
modification No. 6, between the National Aeronautics and Space Administration and the
Westinghouse Electric Corporation (reference WGD-38521). The general objective of this
contract is the advancement of the state-of-the-art in the design of highly reliable electronic
systems associated with the national space effort. The scope of this objective includes the
development of techniques for constructing electronic systems which are invulnerable to the
effects of relatively large numbers of internal component failures. The research reported
herein has as its objective the development of techniques for efficiently allocating a limited
number of test points within modularly redundant digital systems, and the estimation of

system reliability based on the results obtained from limited testing.
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. INTRODUCTION

The steadily increasing sophistication of space missions has been reflected in an increas-
ed complexity of spaceborne electronic data processing and control systems. This increase
in complexity tends to lower the reliability of systems which normally operate in an environ-
ment where the cost of system failure is extremely high. In many cases, this cost may include

the loss of human life in addition to the loss of a space vehicle and an aborted mission.

Several investigators have shown that the reliability of electronic systems can be greatly
increased through the proper use of redundant equipment. By far the largest portion of the
analytical work in this area has been concentrated on the development of synthesis techniques
and the estimation of the initial reliability of redundant systems. Relatively little work has
been done on the development of procedures for testing redundant systems and for estimating

their reliability when one or more system components may be failed at the time of the estimation.

Pre-launch testing of spaceborne electronic systems is becoming more and more difficult
as systems increase in complexity while decreasing in physical size. The testing problem
will soon become worse as in-flight tests are used to determine the choice of alternative actions
in deep space probes. The nature of redundant systems further complicates this problem be-
cause component failures which are undetectable by in-system operational exercises often
increase the vulnerability of systems to future component failures. The combination of the
above factors will tend to severely limit the usefulness of complex redundant spaceborne
systems unless suitable methods of prelaunch and in-flight testing and test evaluation can be
developed. The development of these methods should provide a sound basis upon which space

vehicle launch or mid-course decisions can be made.

The user of a spaceborne electronic equipment has three different situations in which
he may wish to test the equipment. The first situation exists when the equipment is being
examined in a shop environment prior to being mounted in the space vehicle. In this situation,
time is usually not of the essence and exhaustive testing is desirable to the limit permitted by
the physical design of the equipment. The second situation exists when the equipment has
been mounted in the vehicle, and a test is to be made just prior to launch. In this case, time

is of the essence and does not permit an exhaustive test of an entire redundant data processing
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system. The third situation exists only during long term, multi-phase space missions where
a test is made near the end of a phase to determine which of the possible alternatives should
be followed during the next phase. In most of the latter cases the decision made simply
determines whether to continue or terminate the mission depending on the probability of
successfully completing the next phase. In this case, both time and the complexity of the re-

quired test equipment are of vital interest.

In the latter two situations, there exists an obvious need for a technique to facilitate
making an accurate estimate of the probability of successfully completing the mission based
on information gained from testing only part of the system before or during the mission. Even
in the shop environment, a similar need often exists because the use of tightly packaged micro-
miniature circuitry may severely limit the amount of individual subsystem testing which can be
performed. This is true regardless of the time permitted for the test or the availability of

sophisticated test equipment.

The problem may be more precisely stated in the following manner. At some time, tl’
the user of a redundant digital system desires to estimate, as accurately as possible, the

probability that a system will operate continuously until some later time, t The user must

make the estimate in some reasonably short period of time, using a limiteg amount of test
equipment and a limited number of accessible test points. The general problem is to develop a
test philosophy and a compatible statistical analysis procedure which will permit this user to
confidently make decisions based on his estimate of the probability of successfully completing
the mission. The accuracy of his estimate must reflect the cost associated with a wrong

decision.

Within the general problem area, a natural dichotomy exists between the test design
problem and the statistical estimation problem. Although these two problems are intimately
related, they represent two separable points of emphasis, and they may be associated with
slightly different short-range goals. The goal of a given test program is the development of
a test procedure which will provide the most failure state information at a fixed cost or,
conversely, a fixed amount of information of a minimal cost. In this context, time, number of
system test points and test equipment all may be assumed to have an associated cost per unit.
On the other hand, the goal of the statistical reliability estimation problem is the development
of a technique for using the test results to provide the most accurate obtainable system
reliability estimate. The recognition of this division is not meant to imply, however, that the

two problems should be considered independently.

This report describes the results of a study program to develop a practical solution to

this general problem. Section II describes a procedure for estimating the probability that a
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redundant system will successfully complete a mission, using the information obtained from
limited testing within the system. Section III describes a technique for optimally allocating the

llmited number of test points within a redundant digital system.

Both the test point allocation technique and the compatible reliability analysis procedure
have been programmed in the FORTRAN IV language. Descriptions of the two computer
programs appear in appendices A and B. The programs have been documented in sufficient
detail to enable a redundant system designer or user to perform an analysis of the system

using the programs.

As an illustration of the applicability of the computer programs to practical systems, they
have been applied to a specific redundant system design configuration-the modularly redundant
Mariner C Spacecraft Sequencer. The details and results of this application are described in

section IV,

A set of assumptions has been made to precisely define the problem boundaries. This
set of assumptions was intended to focus the study effort on the members of a class of systems
which are most likely to be used in the field in the relatively near future. These assumptions

are enumerated below.

1. Only order-three redundant systems are considered.

2. Systems are so complex that exhaustive testing of each subsystem is not feasible at
the time of interest.

3. The individual subsystems fail at a constant rate; hence, they have exponential
reliability functions.

4, The design failure rates of system components are assumed to be true.

5. The tests can be made rapidly enough so that no failures will occur during the test
period.

6. The system can be exercised sufficiently to assure that it is functionally operational

at the time of test.
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Il. RELIABILITY ANALYSIS PROCEDURE

The exact reliability analysis of the redundant system is a difficult process which is not

easily applied to the general system. There are two generalized reliability approximation

-techniques which have been considered as a base for a procedure to estimate, after limited

testing, the probability of mission success of the general redundant system. The first

technique is the minimal cuts analysis procedure, developed by Esary and Proschan. The
second technique is the block model analysis procedure developed by D. K. Rubin, of JPL.
Both of these methods produce a lower bound estimate of the true reliability of the general

complex redundant system.

The definition of system reliability for both the minimal cuts technique and the block
model procedure, is the probability that the system is successful at time t, given that all its

components were operational at time zero and that there is no repair.

Both of the analysis procedures are based on the concept of coherent systems. This
term refers to the effect of subsystem failures on the operation of the system. A coherent

system is defined by four conditions:

1. If when a group of circuits in the system is failed causing the system to be failed,
the occurrence of any additional failure or failures will not return the system to a

successful condition,;

2. If when a group of circuits in the system are successful and the system is successful,
the system will not fail if some of the failed components are returned to the

successful condition;
3. When all the circuits in the system are successful the system will be successful and,
4. When all the circuits in the system are failed the system is failed.

The assumption of coherence produces an inherent pessimism in both analysis procedures,

even for simple series-connected systems.

The block model technique was chosen as the basis for the reliability analysis procedure
in the present study. There are a number of advantages gained from the selection of this

procedure over the minimal cuts technique.
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Mr. Rubin's study has included a comparison of the two procedures. He has proved that
for series-connected triple modularly redundant systems, the block model produces a greater
lower-bound than does the minimal cuts. No exact error analysis has been performed to
determine exactly the closeness of either of the two lower-bounds to the actual reliability of
the general complex modularly redundant network. However, sample calculations for specific
systems of some complexity have indicated that the block model is indeed superior to the

minimal cuts model.

The block model procedure is inherently simpler in concept than the minimal cuts tech-
nique. Computer implementation of the block model is correspondingly simpler and produces

a program which is shorter in both length and computer running time.

The reliability analysis program produced during the present study is required to be
written in FORTRAN IV, to be highly machine-independent. The minimal cuts procedure
has been previously programmed by Westinghouse, as a part of a larger computer program
designed to synthesize modularly redundant systems. The program, written in the FAP
language, is not documented, however. The amount of effort, therefore, to extract the
minimal cuts protion of the FAP program and convert it to FORTRAN IV would be much greater
than that necessary to program the block model procedure. The effort required to completely
reprogram the minimal cuts procedure would also be greater than that needed to program the
block model procedure. For these reasons, the block model has been chosen as the basis for

the reliabillty analysis procedure.

The following section describes briefly the minimal cuts technique. This is followed by

a discussion of the block model procedure used in the reliability analysis program.
A. MINIMAL CUTS TECHNIQUE

A cut is a set of circuits such that if they fail the system will have failed regardless of
the condition of the other circuits in the system. The system may have a large number of cuts
and a particular circuit may be in more than one of them. An example of a coherent system
is shown in figure 1. As long as any path through successful circuits exists between the two
terminals of the system, the system is said to be successful. A circuit failure opens the

path between the two terminals of the circuit.
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Figure 1. Example of a Coherent Network

Table 1. The Cuts of the Network in Figure 1.
Cut No. Circuits in the Cut
1. 1,2
2. 1,2,3
3. 1,2,4
4, 1,2,5
5. 1,2,3,4
6. 1,2,3,5
7. 1,2,4,5
8. 1,2,3,4,5
9. 4,5
10. 3,4,5
11. 2,4,5
12. 1,4,5
13. 2,3,4,5
14. 1,3,4,5
15. 1, 3,5
16. 2,3,4
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The cuts of this system are listed in table 1. The numbers of the circuits describe the

cuts. The failure of any of the cuts will cause the network of figure 1 to fail.

A minimal cut is defined as a cut in which there is no subset of circuits whose failure
alone will cause the system to fail. From table 1 the minimal cuts of the network in figure
1 can easily be recognized. They are listed in table 2 along with their probabilities of
occurrence. Since the symbol P, represents the probability of success, of the ith circuit, then

(l-p_.l) is the probability that the ith circuit fails.

Table 2. The Minimal Cuts of the Network in Figure 1.

Min. Cut No. Circuits in the Min. Cut Probability of Failure
of the Min. Cut
1 1,2 (1-p;) (1-p,)
2 4,5 (1-p,) (1-py)

3. 1,3,5 (1-p;) (1-pg) (1-pg)

4 2,3,4 (1-p,) (1-py) (1-p,)

The lower bound approximation to reliability depends on the identification of all the mini-
mal cuts in the network. Esary and Proschan found that a lower bound to system reliability is
the probability that none of the system's minimal cuts fails. For the example, this lower

bound, RLB is:

Ryp= [1-(1-p) (1-pp)] [1-(1-py (1-pg)] [1-(1-pp (1-pg) (1-pg)]

[1 - (1-p,) (1-pg) (1—p4)] (11-1)

This relationship can be written for general systems if the jth minimal cut is denoted by
the set S.. The members of the jth minimal cut are given by i€ §j' The probability of failure
of the jth minimal cut is:

I(1-p)

i€ Sj (I1-2)

The lower bound to the system reliability is the probability that none of the system's

minimal cuts fail or:

= 1 [1_

RiB = allj i IeIs (l'pi)] (I1-3)

i .
)
The minimal cuts of a multiple-line redundant network have three characteristics which
are sufficient to establish their identity. These are listed below. For these characteristics,
m denotes the order of redundancy and specifies the minimum number of correct circuits

required in each stage.

1. All the members of the minimal cut are circuits in a restored function or in
the functions or restorers that are the error-linked sources of that restored

function.
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2. The failure of each member of the minimal cut will cause one output line of

the restored function to be in error, and each member will be in a different

position, or rank.

3. The failure of a minimal cut will cause exactly m-k+1 output lines of the
restored function to be in error, hence a minimal cut will have m-k+1 mem-

bers.

For an order-three redundant system, these characteristics may be used to construct
an expression for the minimal cuts lower bound on system reliability. For an order-three
network, the minimal cut will consist of 2 subsystems, each in a different position and each
either in the restored function or in its error-linked sources. There are two kinds of minimal
cuts in an order-three network. The first kind includes those cuts in which both subsystems are
in the same function or restorer. Every function or restorer in the network will contribute
this type of cut. The probability of failure of a cut of this nature in function X is:

(l-px)2 (11-4)

There are three ways to choose the subsystems which are failed in a particular function

or restorer. Then each will contribute three minimal cuts. The probability that failure does

not occur because of failure of minimal cuts of the first kind is:

m [1-C a ) a-p)?] (II-5)

all x

The symbol dx represents a Boolean function which is 1 if stage x is present in the system,

and Oif stage x is not present.

The second kind of minimal cut includes two 'subsystems, one in each of two function or
restorer stages. Two subsystems are in the same minimal cut only if they are both error-
linked sources of the same restored function. The probability of a minimal cut of the second

kind, one in function xand one in function y is:
(1-p) (1-p,). (11-6)

Minimal cuts of the second kind are present in functions x and y only if the Boolean

function

[ d. diy] =1 (11-7)

is satisfied. Equation II-7 says that both X and y are error-linked sources of the same

restored function, i.



Then the probability that a cut of the second kind does not fail in function x and y is:

1-(d ) (1-p)) (l-py) (11-8)

ix diy X#y
Subsystems in the same rank cannot be in the same minimal cut. There are three ranks
from which the first member of the minimal cut may be chosen from function x but once this
choice is made, there are only two ranks in function y from which the second member of the
cut may be chosen. There are then 6 minimal cuts which include one subsystem in function x

and one subsystem in function y.

With this information, the probability that a minimal cut of the second kind does not

fail in a system can be written:

3 1-(d._ d.) (1-p_) (1-p.) (11-9)
all X £y [ ix iy’ x#y X y ]

all i
Now with the results of (II-5) and (II-9) the total minimal cut reliability expression for an

order-three system is written.

3 6

. (I _ p ) 1) - p)(1-
RLB_ { all x [1 (dx) & px) ] } { allx#y [ 1 (dix diy) X#£Y ( px)(1 py)] }
all i
(I1-10)
This equation is valid for a system in which all subsystems in all stages have the same
reliability. For the general case in which the subsystem reliabilities may differ, the cubic

and sixth power terms in (II-10) must be expanded.

The minimal cuts technique is conceptually more complex than the block model procedure.
In addition, the computer implementation of the minimal cuts is both more lengthy and slower

than the block model implementation.

B. BLOCK MODEL ANALYSIS METHOD

The procedure for estimating the reliability of partially tested redundant systems used
in this study is based on the block model analysis technique, developed by D. K. Rubin, of
J.P. L. In the block model procedure, it is assumed that the failure of majority of replicas
of a subsystem will cause a system failure. It is further assumed that the analysis is made at
time zero, and that all units, or subsystems, are operating correctly. For the present study,
these latter two assumptions have been relaxed and the procedure correspondingly modified

to include information obtained from system test data. The following paragraphs describe
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first the basic block analysis procedure. This is followed by a section explaining the modi- ‘

fied procedure used in the computer program implementation. |

The block model analysis procedure yields a lower-bound estimate of the reliability of
triple-modularly redundant systems of any arbitrary configuration. The procedure begins by
grouping together subsystems, or stages, each of whose unit failures can combine with unit
failures of another stage to cause system failure. Units in each group are isolated from those

in other groups. For example, figure 2 shows, in block diagram form,

Figure 2. Portion of a Series-connected System

a portion of a series-connected, triple modularly redundant system. The boxes represent
subsystems, or units, and the circles represent restorers, or voters. The failure of a unit

in stage 1 can combine with a failure of a unit in stage 2 to produce system failure. Similarly,
failure of units in stages 3 and 4 can combine with those of the voter stage, V, or with each
other's failures, to produce system failure. The failure of a unit in stage 1 or 2, however,
cannot combine with the failure of a unit in stages 3,4, or V to produce system failure. There
are therefore two groups, or blocks which can be formed: group 1, composed of stages 1 and 2,
and group 2, composed of stages 3,4, and V. Since the failure of a unit in one group cannot
combine with the failure of a unit in another group to cause system failure, the groups are
independent, and the reliability of each group may be computed independently of the other
groups. The resultant reliabilities may then be multiplied to produce the system reliability,

according to the series-chain rule.

Figure 3 shows the reliability model for the system of figure 2. If it is assumed that

the subsystem units
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Figure 3. Block Reliability Model of the System in figure 2.

in figure 2 have equal reliabilities, p, and that the voter units have equal reliabilities, pv,
then the reliabilities of the units in block 1 are p2. By the same argument, the reliability of
a unit in block 2 is pzpv. The reliability of each block may be computed by the formula Py =
3p2-2p3, where p is the block unit reliability. The system reliability estimate is then the
product of the pB's:

R :alll-li pBi (I1-11)
The rules described above for forming the blocks of a given system can be shown to
reduce to one rule for series-connected systems: namely, that the units of a block consist
of all of the units providing direct or indirect inputs to a given restorer, and which are also
failure-linked to the restored stage. It is assumed that every system output has a restorer.
For simple, series-connected systems, all of the blocks defined by this method will be
failure-independent from one another, and the resulting system reliability estimate is the
exact system reliability. For complex systems involving feedback, feedforward, and multiple
fan-out, however, the blocks will not actually be independent. The system reliability estimate,

therefore, will not be the actual reliability, but will be a lower-bound estimate.

As an example, figure 4 shows one such complex system. The rectangles in the figure
symbolize triplicated stages in the triple modularly redundant system, and the ovals indicate
the triplicated majority voters. The blocks for this system can be formed in accordance

with the rule above. For example, the output of function 3 has three error-linked sources:
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function 1, function 2, and of course, function 3. These three stages therefore form one
block of the system. A second block is composed of the error-linked sources of function 5.
They are: function 5, voter 3, function 2, function 4, functionl, and because of the feedback

ioop, function 6 and voter 5. The remaining three blocks are formed in the same manner.

Y

Figure 4. Majority-voted Triple- Modularly Redundant System.

The five blocks for the system are listed in table 3. The numbers in the table refer to the
stage numbers in figure 4. The lettered numbers, such as V3 and V5, refer to the voters

following the stages of the same numbers.

Table 3. Blocks for the System in Figure 4.
Block 1 Block 2 Block 3 Block 4 Block 5
1 1 1 6 10
2 2 2 9 11
3 4 4 V3 V8
5 6 V5
6 7 V8
V3 8
V5 V3
V5

It is obvious that the resulting blocks are not failure-independent.

appear on two or more blocks.

Many of the stages

Thus the reliability estimate is a lower-bound approximation

to the actual system reliability.
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C. MODIFIED BLOCK ANALYSIS METHOD

The block model analysis technique has been modified to include information obtained
from partial testing. The procedures for forming blocks and combining block reliabilities
remain exactly the same. The individual unit reliabilities, however, must be altered to
reflect test data showing them to be failed or working at the time of the test. The revised
unit reliability is the product of two probabilities: (1) The probability that the unit is working
at the time of the test, and (2) the conditional probability that the unit will be working at the

end of the mission, given that it was working at test time.

That is,

r, = [Pi (W(t, ))] X [Pi(W(tm)/ W(tt))] , (-12)
where Pi(w(tt)) is the probability that subsystem i is operational at test time, ts
and Pi(w(tm) / W(tt)) is the conditional probability that subsystem i will operate

continuously until mission end, tm, given that it was operational

at tt'

The first probability may be changed to reflect operational information obtained from test data,

whereas the second probability remains unchanged.

For this discussion, a single "test point" tests all three ranks at its location. The
information obtained from a test point at a given location shows which of the three ranks is
failed, if a failure exists at the location. A more comprehensive discussion of the test point

is included later, in section III-A.

The method of computing a revised estimate of a unit's reliability can be most easily

shown by a few brief examples.

Example 1. A segment of a typical triple modularly redundant system is shown in figure
5. A test point is located after stage 3, as indicated by the triangle. If the test data indicates
that all three ranks are operating, the probabilities that the units are working at test time is 1. 0.

D W -
Therefore, the new unit reliability will be e i(t2-t1) , Where )‘.1 is the failure rate of unit i, t2
is the mission end time, and tl is the time of test. The revised block reliability is now

P (tm - tt) /P (tt - to), (I1-13)
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where p (tm - tt) is the probability that at least two of the three ranks succeed from
test time to mission end.
and P (tt - to) is the probability that the block is operating at test time. This

latter factor is a result of the basic assumption that the system is

functionally operational at test time.

For this example, the latter factor is, of course, unity, since the block was tested.

Example 2: See Figure 6 on the following page.

The assumptions are now made that test points are located after stages 2 and 3,
and that the test points indicate that rank A of stage 2 has failed, while all other ranks are
operational. All units except unit 2A, therefore, are working, and have a new probability of

working at the time of test. This probability is unity (1). The corresponding probability for

unit 2A is, of course, zero.

Example 3: See Figure 7 on the following page.

For this example, the existence of only one test point, showing all ranks of stage

2 working, is assumed.

Al —p -
Bl =t _._j
C | =iy ‘
|
A2 iy
B2~ —J 3 ﬁ
C2—»
2
Figure 5. All three ranks observed as operational.
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Figure 7. A tested block and an untested block with a common stage.
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As a result, all units in stages 1 and 2 have a probability of operating at test, of unity (1).
Nothing is known about the state of the units in stage 3, however, so their probabilities are un-
changed. Since the block consisting of stages 1 and 3 is untested, the block's reliability is
computed with the constraints that units 1A, 1B, and 1C are working, and that at least 2 of

the ranks in the block are working at the time of the test.

Example 4: There is one additional test situation which must be handled in a manner
differing from that of the three examples above. Assume that the test point in figure 7 does
not show all three ranks working, but instead indicates an error at the output of rank A. In
this case, the probability that subsystem A in stage 1 is operational at test time cannot be set
to zero. The error in rank A of the tested block may have had no effect on the output of the
untested stage. Subsystem 1A may be operating, while subsystem 2A is failed. The probability

that 2A is operational must therefore be calculated.

Assume that Py is the a priori (without test data) probability that a subsystem in stage 1
is operational at test time, and P, is the a prior probability that a unit in stage 2 is operational
Then the probability that at least one subsystem in rank A of the tested block is failed is given
by

pF(A) =1- PPy (11-14)
The probability that subsystem 1A is working is then given by the equation
pl -1 ( 1'_pl_> (11-15)
1 1-p;p,

In general, the probability that a subsystem common to both a tested-failed rank and an
untested block is operational at test time is
g - (1_1’_c,_ ) (11-16)

1-% 9

i=1

where p is the revised probability that the common subsystem is operational at

test time.

Pe is the a priori probability that the common subsystem is operational at

test time

Py is the a priori probability that subsystem i in the tested-failed rank is

operational at test time
and n is the total number of subsystems in the tested-failed rank

The revised probability plc is used in the calculation of the reliability estimate of the untested
block.
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The foregoing examples illustrate the main types of modifications to be made to
the block analysis procedure. In tested blocks, the probabilities that individual units are
working at test are changed according to the test data. In untested blocks, the probabilities
of all untested units remain unchanged. The reliabilities of all blocks are changed, however,
by computing them according to the constraint that at least 2 ranks are operating, since the

system is operating.
1. Test Data Effects

As an illustration of the effect of test data on the reliability estimate of a redundant

system, a number of computer runs have been made with the reliability analysis program.

Consider the simple system in figure 8. Fach box represents a triple modularly

redundant stage of the system, and each circle represents a set of

- ;Q__n
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Figure 8. Example S stem with Two Test Points.

three voters. There are two test points, at the locations indicated by the numbered triangles.
All units are assumed to have equal failure rates. Test point 1 is assumed to have indicated

a failure in one rank, and test point 2 indicates no failures. Table 4 below shows the result-
ing system reliability estimates for several different test times. The initial system reliability
estimate, assuming that all units are operational at time zero, is 0.992469. The total

mission time is TM.

Table 4. Reliability Estimates for System in Figure 8.

Failure Observed at Test Point One
Test Time Probability of Success
TM/4 0. 932153
T™M/2 0. 954256
3TM/4 0. 976869
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Table 5 shows a number of reliability estimates for the same system, with the same
test points and initial reliability estimate. In this case, however, no failures are observed at

the test points.

Table 5. Reliability Estimates for System in Figure 8.

No Failures Observed
Test Time Reliability
TM/4 0. 994953
TM/2 0.997052
3TM/4 0.998742

As expected, the reliability estimate increases as the test is performed later into the mission.
The reliability estimates for the second case, with no observed failures, are significantly

higher than those of the first case.
D. COMPUTER PROGRAM CAPABILITY

The reliability analysis program computes an estimate of system reliability, using the
modified block model method. The program first constructs the lists of blocks for the
system, and then modifies subsystem reliabilities in accordance with the test data. The
reliability estimate for each of the blocks is then calculated, and the system reliability
estimate is the series product of the block reliability estimates. As stated earlier, the block
reliability estimates are calculated with the constraint that the system is functionally

operational at the time the test and estimation are performed.

The program has the capability to estimate the reliability after test for virtually any
triple-modularly redundant digital system. Any degree of system complexity will be handled
by the program, including feedback, feedforward, and multiple fan-in and fan-out. Every

stage in the system, including restorer stages, must be order-three redundant.

The program has, in addition, an option to calculate an estimate of the initial
reliability of the system; i. e. the reliability at time zero, assuming that all system com-
ponents are operational. This estimate is computed by the unmodified block model method.
The initial reliability estimate can be used as a comparison with the estimate based on the

test data.

The reliability analysis program is written in FORTRAN IV, making it highly machine-
independent. The size of the system to be analyzed will be limited only by individual computer

storage limitations and allowable running time.
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1. TEST POINT ALLOCATION PROCEDURE

A. TEST POINT DEFINITION AND IMPLEMENTATION

The general term "test point' may be defined in anyone of a number of specific ways.
For example, the term could refer to all of the circuitry required to verify the operation of
a particular subsystem within a redundant system, or the operation of one rank of a system.
In either of these cases, the test circuitry would in general be sufficiently complex to pro-
duce a significant effect on the reliability of the system and on the confidence factor associated
with any test results. Similar, although less detrimental, effects would be noted in the case
of a "test point' defined as all of the equipment necessary to compare the operation of two
of the subsystem or signal replicas at a given stage and subsequently determine the opera-

tional status of both replicas.

For the purposes of this study, the term ''test point' can have either one of two closely
related meanings. It may mean a set of simple contact points at which triplicated subsystem
outputs can be sampled, or it may mean a set of circuits used to detect differences between
three nominally identical output signals. In the first case, simple difference detector
circuits are fabricated as part of the external test equipment while in the second case these

circuits are built into the operational equipment.

The important common factors about the two types of test points are that the same test
information is ultimately produced by either type, and the design of all test points of one
type is the same. The information produced is, of course, the exact rank, if any, which is
in error. Assuming that in any particular system, only one type of test point will be used,
any size, weight, power consumption or initial cost constraints can be immediately converted
to a single maximum number of test points constraint. To this analytical advantage of having
only one constraint, is added the advantage of requiring extremely simple test circuitry of a
type having little or no effect on the basic system design, the system reliability, or on the
confidence factor associated with the test results. For the purposes of this study, these

latter factors, therefore, are assumed to be negligible.

As often happens, the price of test point simplicity is paid for by a reduction in
information obtainable relative to a more complicated test mechanism. In this case, the
information that is lost is that which shows the exact subsystem location of a failure which

causes any observed signal error. Lacking this information, the observer may have difficulty
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in assessing the true implications of an observed error relative to the status of the overall

system. This difficulty is illustrated by the following example.

A B % X OBSERVED

Figure 9. A Segment of One Rank of a Redundant
Digital System.
Referring to Figure 9, if an error observed at point X is the result of a failure in subsystem
B, the reliability of the rest of the system is significantly greater than if the failure is in
subsystem A. Interestingly enough, a double failure, i.e., failures in both A and B, has

exactly the same effect on system reliability as a failure in A but not B.

The reliability analysis problem is further complicated if multiple errors are observed
along interconnecting strings. For example, if errors are observed at both X and Y, the
observer still does not know if A alone has failed, or if B and C have failed. Again the
reliability estimate for the rest of the system varies, depending on which of the possible
failure patterns exists. The combined failures of A, B and C are equivalent to a single

failure in A alone.

Section II above describes the procedure used in estimating the effect on the reliability

caused by observed signal errors.
B. TEST POINT VALUE CRITERIA

Any attempt to develop a procedure for allocating test points within a redundant system
must be preceded by the development of some function defining the "'value' of a test point.
That is, what mathematical criterion should be used in deciding the optimum placement of
each succeeding test point added to a system. The most desirable criterion would be one
which defines the most "valuable'' test point location as that which will allow a test point to
supply information which will have the greatest effect on the system reliability estimate.
This effect would be measured by the change in the system reliability estimate relative to
an estimate made without the information of a test point at that location or competing test

point locations.
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1. Criterion Based on the Expected Change in the Reliability Estimate.

Consider a test point value criterion based on direct measurement of the expected
change in the estimate of reliability. Assume that we wish to determine the value of placing

a test point at the output of the block or stage shown in figure 10. We must first measure
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Figuré 10. Potential Test Point Location

the expected reliability without a test point. Assume that the subsystems in the block have
equal failure rates. The probability that the block is functionally operational at test time

is given by:

R(tl) = 3 [p (tl-to)] 2_3 [p (tl-toI ] 3, am-1)

where p (tl-to) is the conditional probability that a subsystem will be operating at test time,

tl, given that it was operational at to‘

The probability that the block is operational at the end of the mission, tm, is given

similarly by the formula:
2 3
R@Q_s[p(%4g] -z[pam43]' (I11-2)
Now, one of the basic assumptions of the present study is that the system is functionally
opeartional at the time of test, tl' Therefore, it is known that every block in the system is
functionally operational; i. e., that at least two of the three subsystems in every stage are

working at test time. The expected reliability of the block in figure III-2 can then be

computed from equations (ITI-1) and (III-2). It is:
2 3
3 [p(tm—to)] -2 [p(tm-to)] (I11-3)

3 | p(t,-t) 2 o pt,-t) 3
1 o 1 o

R is the conditional probability that the block will operate continuously until tm, given that

it was functionally operational at t-
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Let us now define a test point value function, the purpose of which is to measure the expected
change in the reliability estimate, caused by the addition of a test point at a given location

in a system. The value function is

= z -R -
v= (a11 i Pi Ri) R}. (I11-4)

In this equation,
Pi = the conditional probability that a particular failure pattern, i, will be observed
at the location, given that the system is working.
Ri = the reliability estimate of the block, given that failure pattern i is observed.

R = the expected reliability estimate without the information of the test point.

Since the block is assumed to be functionally operational at test time, there are two possible
observed failure patterns at a test point: (1) there is a failure in one rank of the block, or
(2) there are no failures; all ranks are operational. The probability that failure pattern (1)

will be observed is given by the following equation:

 [rgy)]
) 3 [P(tl—to) ] 1-P(t1—to)
1 2 3
3 [P(tl-to)] -2 [P(tl—to)]
The probability that failure pattern (2) will be observed is:
[P(tft )] ’
P. = 0 : (111-6)

2 3 [P(tl-to)] 2 o [P(tl-to) ] 3

If failure pattern (1) is observed, the reliability estimate of the block is

P

(I11-5)

2
R, = [P(tm-tl)] (IT1-7)
Similarly, the reliability estimate of the block when failure pattern (2) is observed, is

R, = ( [P(tm-tl) ] 2) (3 -2 [P(tm-—tl)] ) (111-8)

For a given test point, then, the quantity 2. P. R,., the expected reliability estimate with
alli "i7i P

test information, becomes

2 pR-=-P
1 1

all'i R1 + P2 R2. (I111-9)

1
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When equations (III-5) through (III-8) are substituted in equation (III-9), the result is

: ool @ [Pt ]2 (1- [P(tl-to)]) pe_-tpf [pe-0)] 2 [pe_-t)] 2([3-2 P(tm-tl)]>

alli “i°° 2 3
3 [P(tl-to)] -2 [P(tl_to)] (I1I-10)
which reduces to
2 2 3 3
: 3[P(t1-to)] [P(tm-tl)] - Z[P(tl-to)] [P(tm-tl)]
. PR, = : (I11-11)
alli i

2 3
3 [P(tl-to)] -2 [P(tl-to)]
However, the product P(tl-to) 'P(tm-tl) is equal to the probability P(tm-to), since all

subsystem P's are assumed to be exponentials. Therefore, equation (II-11) can be

reduced further, to

. _ 3 [P(tm-to)] 2 9 [P(tm-to)] 3

alli FiFy =
3 [P(tl—to)] 2 o [P(tl—to)] 3

Equation (III-12) is the expected reliability estimate of the block with a test point. It

(I11-12)

can be seen, however, that this equation is identically equal to equation (III-3), the expected
reliability estimate without the test point. When these equations are substituted into the

value function equation (III-4), the result is zero:

all i R-R ‘ = 0. (IT1-13)

v=](2Z P R) - R

The expected reliability estimate with test data is identically equal to that without test data.
Of course, a given set of test data will produce, in general, a change in the reliability
estimate. But a value function to measure the a priori change will always result in zero
value for all test points. Because of this basic difficulty, a different approach to the
definition of a test point value function has been taken. This approach is based on one of the

basic principles of information theory.
2. Information Theory Criterion.

It is known that in a situation in which there is a binary (two possible outcomes) result,
the average amount of information obtained is a function of the results' probabilities of occurrence.
This information is a maximum when the two results are equally probable. The result
obtained from a test point in a redundant digital system is such a binary situation. The test
point can observe either one failure or no failures. Because any redundant systems under

consideration are expected to be operating in a high reliability (above 0. 95) region, the
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amount of information obtained from a test point can be maximized by maximizing the
probability of observing a failure at the potential test point location. This is the location
most nearly equalizing the probability of observing either the failed or working state. It
can be concluded, therefore, that each succeeding test point added to the system should be
located at the point in the system at which the probability of observing an erroneous signal

is at a maximum.

It is on the basis of this conclusion that the test po int allocation computer program
has been developed. The value of placing a test point at a potential location is defined as the
conditional probability that a failure will be observed, given that the system is functionally
operational. The computer program has been constructed to handle low reliability systems,
where the probabilities that a failure will be observed at a given location may be greater
than 0.5. In such systems the optimum placement will not, in general, be at the point of

maximum probability of failure, but rather at the point at which the probability is closest to

0.5. For this reason, the '"value' which program actually computes is the difference between

the probability of failure and 0.5. For high reliability systems, however, the effective value
criterion defines the most valuable test point location as the point with maximum probability

of failure.

> $ BLOCK
ouTPUT

- —

Figure 11. Block Output, Potential Test Point Location

Assume that a potential test point location is the output of the block shown in figure 11. The
probability that a subsystem is operational is P(tl—to); the subsystems in all three ranks

have equal failure rates. The value of placing a test point at the block's output is therefore

[P(tl-to)] 3

V=1 — (Im-14)

3 [P(tl—to)] 2 9 [P(tl-to)] 3
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If we assume that the subsystems have unequal failure rates, this value function

equation must be expanded. The resulting function is:

[Pa(tl-to)] [Pb(tl-to)] [Pc(tl-to)]
[Pa(tl-to)] [Pb(tl-to)] + [Pa(tl-to)] [Pc(tl-to)] 4 [Pb(tl-to)] [Pc(tl-to):l

-2 I:Pa(tl-to)] Pb(tl-to)] [Pc(tl—to)] (I11-15)

The potential test point locations are defined as the outputs of the blocks in the block

reliability model. Each test point, therefore, could be located at either the output of a
restored function or a system output. It can be seen that at this location in a given block,

the total number of subsystems tested is greater than at any other location in the block.

This test point allocation procedure follows the techniques used in the block reliability
model, i. e. the blocks are considered to be failure-independent. The placement of each
succeeding test point therefore is not dependent on the locations of the previously allocated
points.

a) Example Allocation.
A typical system to which the test point allocation procedure could be applied
is shown in figure 12. There are five possible test point locations: the outputs of stages
3, 5, and 8 and at the two system outputs, stages 9 and 11. The allocation procedure was

applied to this system, using the computer

L -Oy

Y

- 2 > 7 ‘ta

>

Figure 12. Majority-voted Triple-modularly Redundant System.
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program. All units were given equal failure rates of 0. 2106x10_4 per unit time. The test
time was set at 50 time units. The resulting allocations, with their corresponding 'values"

are shown in table 6.

Table 6. Test Points Allocated to the System in Figure 12.

TEST PT VALUE LOCATE AT
NUMBER STAGE
-1

1 0. 24751x10 8

2 0.21713;(10'1 5

3 0.15590x10" 1 9

4 0. 94028x10‘2 11

5 0.94028x10" 2 3

C. COMPUTER PROGRAM CAPABILITY

The test point allocation program allocates a limited number of test points within a
triple-modularly redundant digital system. The program calculates the value of placing a
test point at each of the potential test point locations. Since the potential test point locations
consist of the outputs of all of the blocks in the block model, the program calculates the

probability that an erroneous signal will be observed at each of the block outputs.

The result of the program is an ordered list of the potential test point locations, listed
in order of decreasing value. The user may then efficiently allocate a limited number (N)

of test points within the system by placing them at the first N locations in the list.

The computer program will handle virtually any triple-modularly redundant digital
system. All of the stages in the system, including voter stages, must be order-three
redundant. Virtually any degree of system complexity can be accomodated by the program,

including feedback, feedforward, and multiple fan-in and fan-out.

The test point allocation program is written in FORTRAN IV, making it highly
machine-independent. The size and complexity of the system to which the program allocates

test points is limited only by individual computer storage and running time limitations.
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IV.PROCRAMS APPLIED TO THE MARINER
C SEQUENCER

In order to demonstrate the applicability of both computer programs to practicable
systems, they have been applied to a specific system design configuration. The system
used is the Mariner C Redundant Spacecraft Sequencer, previously developed for the Jet

Propulsion Laboratories. *

The first step in the application of the programs to a specific system is the conversion
of the system to block diagram form and the subsequent formation of a model of the system.
The stages in the system model are then numbered according to a specific procedure. The
parameters of the system model are read into the program from the model configuration.

The construction of a system model is described in detail in appendices A and B.

The completed system model of the redundant sequencer is shown in figure 13. All
of the output relay circuitry was assumed to be external to the system. Each of the boxes
in the figure represents a function stage, and the circles indicate the restorer stages. The
individual stages shown in dotted lines in the figure represent special "artificial' stages
added to the system. The use of artificial stages is described in the appendices. The
purpose of the artificial input stages nos. 1000, 1001, and 1002 is to shorten certain
table searching in the programs, and thus decrease program running time. The pairs of
artificial output function and restorer stages were added to allow the programs to include
the corresponding system outputs in the list of potential test point locations. The single

artificial restorer stages are added to all system outputs which are not restored.

The failure rates of the subsystems in each stage are shown in table 7. The failure
rates were drawn from the component failure rates listed in the Task II report of the

sequencer design study.

Table 8 shows the results of the test point allocation program. The restorers are
listed in the order in which test points should be added to the system. The corresponding

value of placing a test point at each of the restorers is also shown.

The reliability analysis program was applied to the redundant sequencer by assigning
test points to the first ten test point locations allocated by the test point allocation program.
Five different sets of observations at the ten locations were assumed. Table 9 shows the
assumed test observations for each of the five sets.

*NASA contract No. NAS 7-100; JPL Subcontract No. 950777, Design Study
for a Redundant Spacecraft Sequencer.
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Table 7. Block Model Sybsystem Failure Rates

Failure Rates

Failure Rates

Failure Rates

Stages %/1000 Hours Stages %/1000 Hours Stages %/1000 Hours
1 0. 05004 40 0.00792
2 0.03710 22 0.00100 41-45 0.00100
3 0.03812 23 0.01584 46 0.00916
4 0.02398 24 0.01188 47 0. 00206
5 0.00642 25 0.00596 48 0.00143
6 0.01238 26 0. 00900 49 0. 00206
7 0.00999 27 0.04940 50 0.00143

8-13 0.00100 28-30 0.00100 51 0. 00206
14 0.01433 31 0.01270 52 0.00100
15 0.00459 32 0.00226 53 0.04777
16 0.00376 33 0.00339 54 0.00200
17 0.00399 34 0.00256 55 0.00143
18 0.00366 35 0.00279 56, 57 0.00100
19 0.00100 36 0.00792 58-67 0

20 0.00466 37 0.00100 68-114 0.00300
21 0.00170 38 0.00792 115-134 0

39 0.00100

For each of the five reliability estimates, the total mission time was assumed to be

7,000 hours.

The time of the test was set at 5,000 hours after the system time - zero,

the time at which all components are assumed to have been operational. The resulting

reliability estimate for each of the five sets of test data is shown in table 10. The initial

reliability estimate, at time - zero is 0. 999169.
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Table 8. Test Points Allocated to Sequencer Model

Test Pt. value of Locate at
Number Placing Test Point Restorer Number
1 .513548280-00 93
2 .511247780-00 116
3 . 509875730-00 118
4 .508612420-00 123
5 . 508393590-00 80
6 .508118720-00 112
7 . 507956980-00 95
8 . 507903650-00 68
9 . 507824170-00 114
10 . 507808920-00 94
11 . 506581750-00 70
12 . 506430430-00 69
13 . 506320670-00 73
14 . 505965800-00 74
15 .505610970-00 85
16 . 505584060-00 127
17 . 505584060-00 72
18 . 505487620-00 87
19 . 505230400-00 88
20 . 505175490-00 101
21 . 505086230-00 102
22 . 505041540-00 100
23 . 501372470-00 113
24 . 501348630-00 79
25 . 500749600-00 120
26 . 500599770-00 119
27 . 500599770-00 76
28 . 500449870-00 134
29 . 500449870-00 133
30 . 500449870-00 132
31 . 500449870-00 131
32 . 500449870-00 130
33 . 500449870-00 129
34 . 500449870-00 128
35 . 500449870-00 126
36 . 500449870-00 125
37 . 500449870-00 153
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Table 9. Sets of Test Observations Assumed

Test Point Rank Observed as Fajled
Location Set 1 Set2 | Set3s | Set 4 Set 5
93 0 1 1 1 1
116 0 0 0 2 1
118 0 2 1 3 1
123 0 0 0 1 1
80 0 3 1 2 1
112 0 0 0 3 1
95 0 1 1 1 1
68 0 0 0 2 1
114 0 2 1 3 1
94 0 0 0 1 1
Table 10. Resulting Sequencer Reliability Estimates
Set Reliability Estimate

1 0.999903

9 0. 982376

3 0.978401

4 0. 970831

5 0. 958743
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V. CONCLUSIONS

The reliability figure obtained from the foregoing technique is not an exact solution
to the reliability of complex systems, but a lower-bound estimate. However, since failure
rate estimates themselves are subject to inaccuracies, the analysis time required to pro-
duce an exact reliability estimate of each different system to be analyzed is difficult to
justify. The block model analysis technique is the simplest and most accurate approximation

to system reliability available.

In the test point allocation procedure, the system model used is the block reliability
model. The potential test point locations consist of all of the block outputs, the points at
which all stages in each block can be tested. Since the block model assumes independence
between all blocks, the solution to the value of placing a test point at each of the potential
locations is calculated independently of all other locations. The allocation procedure provides
optimal placement of a limited number of test points consistent with the independence

assumptions of the block model.

The test point allocation technique and the reliability analysis procedure described
herein are sufficiently generalized to facilitate their application to virtually any phy sically
realizable system. The modified block reliability analysis procedure is completely com-~
patible with the test point allocation procedure described. Test data obtained from the

allocated test points can be used directly in the estimation of system reliability.

Both procedures have been programmed in the FORTRAN IV language for implementa-
tion on a general purpose digital computer. The programs provide an extremely simple,
efficient means for estimating the reliability of triple-modularly redundant digital systems
of any arbitrary configuration. The size and/or complexity of the system to which the

procedures may be applied is limited only by computer storage and running time limitations.
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. INTRODUCTION

The test point allocation program allocates a limited number of test points within a
modularly redundant digital system. It provides an extremely simple, fast means of
determining the optimal placement of test points within a system. The program is written

in FORTRAN 1V; it is therefore highly machine-independent.

A WHAT THE PROGRAM DOES

The test point allocation program allocates a limited number of test points within a

1
modularly redundant digital system. The program computes the value of placing a test
point at each of the available test point locations in the system. The available test point

locations are composed of the inputs to each of the restorers in the system model.

The actual results of the program is a listing of all restorers in the system model, in
the order in which test points should be added to the system. Listed with each restorer is the
value of placing a test point at that restorer location. With these results, the user can
efficiently allocate any limited number of test points to the system, up to a maximum of one

test point at each restorer.
B. SYSTEM CONFIGURATION LIMITATIONS

The test point allocation program can be applied only to majority-voted redundant
digital systems. The systems must, in addition, be order-three redundant; i. e., all stages,
including voter stages, must be triplicated. Within these limitations, there are no restric-
tions on the configuration of the system. Virtually any degree of system complexity can be
handled by the program, including feedback loops, feed-forward, multiple fan-in and fan-out.
The size of the system is limited only by computer storage limitations and computer running

time.

A summary flow diagram of the test point allocation program is shown in figure A-1. A

detailed flow diagram appears in section V of this appendix.

The value of a test point is defined in section III-A of the main body of this report.
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Figure A-1. Summary Flow Diagram of the Test Point Allocation Program
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Il. HOW TO USE THE PROGRAM

The system to which test points are to be allocated is first converted to simple block
diagram form. A system model is then constructed which is very similar to the block diagram.
Finally, an ID number is assigned to each stage of the system, according to a procedure
described below. The system model thus completed, the exact system configuration can be
read into the program. The necessary input data describing the system is compiled directly

from the system model.

The following paragraphs describe, first, the construction of the system model, and

secondly, the input data required by the program,
A. SYSTEM MODEL

The first step in the construction of the system model is the conversion of the system to
block diagram form. Each of the ""boxes" in the block diagram indicates either a function
stage or a restorer stage. The usual procedure is to use boxes to indicate the function stages,
and circles to indicate restorer stages. All interconnections between stages are shown in the
diagram, as well as the location of inputs from outside the system and outputs to external
equipment. A failure rate is then assigned to each of the three units, or subsystems, in every
stage.

1. Artificial Stages

The next step in the modelling procedure is the addition to the block diagram of
artificial stages. There are two places in the system at which they might be added: (1) at
all of the system inputs, and (2) at some of the system outputs. The following paragraphs

describe all of the situations in which these artificial stages are used.
a) Artificial Input Stages

The purpose of placing artificial stages at system inputs is to shorten the

program running time, by eliminating unecessary table searching.

Figure A-2 is a block diagram of a simple system to which the program could

be applied. The two system inputs are
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Figure A-2. System Block Diagram, Input Stages Needed

labeled A and B. An artificial stage is added to both A and B, as shown in figure A-3. The

input labels A and B in figure A-2 have been replaced by the two artificial stages.

v

O~ 0—O- 000~
—O

Figure A-3. Input Stages Added to figure A-2

The addition of these input stages completes the model for the system shown. Any failure
rate, including zero, can be applied to the artificial input stages because the program does not

include these failure rates in any calculations.
b) Artificial Output Stages

The first place at which an artificial output stage must be added is at every
system output which does not come directly from a restorer. This situation is shown in

figure A-4. The two system outputs are labeled A and B. Output B is not restored,
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Figure A-4. System needing Artificial Output Stages

so an artificial restorer stage must be added, as shown in figure A-5.

v
>

o O\
'\\_// SYSTEM

MODEL

OUTPUTS
o ) . B
AN

Figure A-5. Output stage added to output B of figure A-4.

There is one other situation in which an output stage must be added. This
occurs when the output of an internal restorer is also a system output, and the user wishes to
include this output as a potential test point location. Since the program considers placing
test points only at restorer inputs, the system model must be altered. The block diagram

shown in figure A-6 illustrates this case.
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Figure A-6. Potential test point at output A

Assume that the user wishes to include output A as a potential test point location. Since the
program considers only restorer inputs as potential locations, an artificial restorer stage
must be added at point A. The system model permits restorers to be placed only at the
outputs of function stages, however, so an artificial function stage must be inserted between
the system restorer and the artificial output restorer. The units in this function stage must be
assigned zero failure rates, so that they do not affect the test point value calculations for

point A. The failure rates for the artificial restorer stage do not enter into any calculations,

so their values are unimportant.
2, Stage ID Numbers

The final step in the construction of the system model is the assignment of an ID
number to every stage in the system. The procedure is as follows. First, the function stages,
excluding artificial input stages, are numbered from 1 to N, where N is the total number of
actual function stages. The restorer stages are then numbered in the following manner. The
restorer of functioni is assigned an ID number of N+i. The restorer of function 1 is assigned
an ID number of N + 1, and the restorer of function N has an ID number of 2N, etc. This
numbering procedure enables the program to distinguish between functions and restorers.
Finally the artificial input stages are assigned ID numbers of 1,000 or greater, in any order.
This enables the program to recognize system inputs when tracing signal paths, thereby
eliminating much unnecessary table searching. (For systems with a total number of stages,
excluding artificial input stages, of 1, 000 or greater, the number 1, 000 can be raised in the

program by changing the instruction on lines 55 and 96 of the program listing. )
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The numbering of the system model stages in the above manner completes the construction
of the model. The program input data defining the system is taken directly from the resulting

model.
B. INPUT DATA CARDS REQUIRED

This section lists the necessary input data cards for the test point allocation program.
The cards are listed in the order in which they must appear in the data deck. Corresponding
FORMAT statements and READ specifications for each item are also shown. Each of the
following paragraphs describes one data card or group of data cards. (NOTE: The FORMAT
(1415)  used to read many of the data cards which have less than 14 items. It is simply a

generalized FORMAT, used to reduced the number of separate FORMAT statements. )
LCT, NOF. FORMAT (14I5). READ LCT, NOF.

LCT is the length of the connection table, i.e., the total number of interconnections in
the system model. NOF is the total number of functions in the system model, excluding

restorers.
Iif_t. FORMAT (14I5) READ (IFR(IT), IT=1, LCT).

IFR is the list of stages which provide inputs to other stages in the system model.
These stages include any artificial input stages. The position of each entry in IFR must be
exactly the same as the position of the corresponding stage in the ITO list, the stage which

receives the input.
ITO FORMAT (1415) READ (ITO(IT), IT=1, LCT).

ITO is the list of stages which recieve outputs from other stages in the system model.
These stages include any artificial output stages in the model. The position of each entry in
ITO must be exactly the same as the position of the corresponding stage in the IFR list, the

stage which provides the input.
TO, T1. FORMAT (2F10.0). READ TO, TI1.

TO is the time zero of the system model; i. e. the time at which all system components
are assumed to have been operational. T1 is the time at which the test will be made. The
units used for these times must, of course, correspond to the time unit used for the failure

rates.
IEQULR. FORMAT (1415) READ IEQULR.

This is the equal reliability flag which indicates, if it equals one, that all three units in
every stage have equal failure rates. H different failure rates are assigned to the units of
any stage, IEQULR is made zero and a separate failure rate is read in for every unit in the

system.
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P (IST, 1,1). FORMAT(6E 12.6). READ (P(IST, 1,1), IST=1, KNO)

This is the list of failure rates for the system units. One failure rate is read in for
each stage in the system, and this value is used for the three units in the stage. The failure
rates for thefunction stages are read in first, followed by those of the restorer stages. For
the case of a function which is not restored, the field corresponding to the appropriate
restorer number may be left blank. The failure values for non-present voters is not used by
the program. This READ statement is used only when IEQULR=1. If IEQULR=0, the following

read statement is used.
P(IST, IRK, 1). FORMAT (6E12. 6). READ ((P(IST, IRK, 1), IRK=1, 3), IST=1, KNOF).

This is the list of failure rates for the system units. One failure rate is read in for each
unit in the system. The failure rates of the three units in a stage are read in consecutively,
and values are read in according to stage ID numbers; i. e. function stages first, followed by
restorer stages. This READ statement is used only when IEQULR=0. If IEQULR=1, the

preceding read statement is used.
LPRINT. FORMAT (1415). READ LPRINT.

This is the printout option flag, which specifies which of two printout modes will be
employed. When LPRINT=0 the "normal operation' mode is used, in which the program
prints only a listing of input data and final results of the analysis. When IPRINT=1, the
"debug operation' is employed, in which the program prints the above information, plus

many of the intermediate computational results.
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lll. OUTPUT TO BE EXPECTED

This section outlines the printout to be expected from the test point allocation program.
The first part of the section describes the output obtained during normal operation of the

program,

Following this is a description of the output available during possible debugging operations,

providing the user with a more extensive view of the intermediate computational results. An
input data constant, LPRINT, specifies which of the output options will be used in any one pro-

gram run.
A, NORMAL OPERATION

The normal operation printout mode is specified by setting the input data constant,
LPRINT, to zero. In this mode, the program prints, first, a listing of the input data

specifying the system which has been analyzed, and, secondly, the results of the analysis.

The first item to be printed is a complete list of the system interconnections. This
listing is followed by the statement of the total number of system function stages, the zero
time of the system, TO, and the time of test, T1. Next, the failure rate of each unit, or
subsystem, is listed. The failure rates of the units in each restorer are listed on the same

line as those of the corresponding function stage.

The printout of the results of the program analysis consists of a listing of the optimum
test point locations. These locations are listed as the restorers at which the test points
should be located, arranged in descending order of test point value. The listing is arranged
in table form. Each line consists of: (1) the number of the test point; (2) the value of placing

it at the indicated location; and (3) the restorer at whose input the test point should be located.

A sample of the printout from the normal operation mode is shown on the following page.
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TEST POINT ALLOCATIONS

SYSTEM INTERCONNECTIONS
FROM TO FROM TO FROM TO FROM TO FROM TO

1000 1 1 6 6 2 6 5 S 3
S 4 2 7 3 8 4 9

TH1IS SYSTEM CONTAINS % FUNCTIONS

TIME ZERO 0
TEST TIME 50,

UNIT FAILURE RATES

cwmemmcneeaFUNCTIONS==ccm=n= e w~ee=RESTORERS=m=mmawem=
STAGE RANK 1 RANK 2 RANK 3 RANK 1 RANK 2 RANK 3
1 ,100503-03 ,100503-03 ,100503-=03 .100503-03 ,100503=03 ,100503=03
2  ,100503=03 ,100503-03 ,100503-03 .100503-03 ,100503=03 ,100503=03
3  ,100503=03 ,100503-03 ,100503~=03 .100503-03 ,100503=03 ,100503=03
4  ,100503-03 ,100503-03 ,100503~03 .100503-03 ,100503-03 ,100503=03
5  ,100503=03 ,100503-03 ,100503=03 .100503-0% ,100503=03 ,100503=03
TEST PT, VALUE OF PLACING LOCATE AT
NUMBER A TEST PQINT RESTORER NUMHBER
1 .543583020-00 9
2 ,543583020=00 8
3 .529411690=00 7
4 .514888410~00 6

B. DEBUG OPERATION

The debug operation printout mode is specified by setting the input data constant,
LPRINT, to one. Inthis mode, the program prints all of the information provided by the
normal operation mode. In addition, further information is printed to enable a user to examine

some of the intermediate computational operations in greater detail.

The first additional listing is composed of the stages which would be tested at the first
potential test point location examined by the program. This list is followed by the conditional
probability that a failure will be observed at that location, given that the system is working.
The program then prints the value of placing a test point at that location. These items are

printed for each potential test point location in turn, as it is examined.

With the additional information of the debug operation mode, the program user can
obtain a check on both the operation of the program and the correctness of the input data. The
listing of the stages tested at each potential test point location provides a further check on the
completeness of the system connection list, in addition to that provided by the printing of the

input data.

A sample of the printout from the debug operation mode is shown on the following page.
The system represented in this case is the same one previously shown for the normal

operation mode.
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TEST POINT ALLOCATIONS

SYSTEM INTERCONNECTIONS

FROM TO FROM TO FROM TO FROM TO FROM TO
1000 1 1 6 6 2 6 5 5 3
S 4 2 7 3 8 4 9
THIS SYSTEM CONTAINS 5 FUNCTIONS
TIME ZERO = 0.
TEST TIME = S0,
UNIT FAILURE RATES
wecencceneefFUNCTIONS=wearae- .- L L s «RESTORERS mamenanne=
STAGE RANK 1 RANK 2 RANK 3 RANK 1 RANK 2 RANK 3
1 .100503-03 ,100503-03 .100503=03 .,100503-03 ,100503=~03 ,100503=03
2 .100503-03 ,L,100503=03 ,L1p0503=03 .100503=-0% ,100503-03 ,.100503=03
3 .100503=-03 ,100503-03 ,100503=03 .100503-03 ,100503-03 ,100503~03
4 .100503=03 ,100503-03 ,100503=03 ,100503~03 ,100503=03 ,100503=03
5 «100503~03 ,100503=03 ,L100503=03 .1005903=03 ,100503=-03 ,100503-03
POTENTIAL TEST LOCATION AT RESTORER NO. 6
TESTED STAGES
1
PROBABILITY THAT A FAILURE 1S OBSERVED= .148884-01
VALUE OF PLACING A TEST POINT HERE= ,514888-00
POTENTIAL TEST LOCATION AT RESTORER NO. 7
TESTED STAGES
2 6
PROBABILITY THAT A FAILURE IS OBSERVEU= .294117-01
VALUE OF PLACING A TEST POINT HERE= ,529412-00
POTENTIAL TEST LOCATION AT RESTORER NO, 8
TESTED STAGES
3 5 6
PROBABILITY THAT A FAILURE 1S OBSERVED= .435830-01
VALUE OF PLACING A TEST POINT HERL=S .H43583-00
POTENTIAL TEST LOCATION AT RESTORER NO. 9
TESTED STAGES
4 5 6
PROBABILITY THAT A FAILURE IS OBSERVED= .435830-01
VALUE OF PLACING A TEST POINT HERE= ,543583-00
TEST PT, VALUE OF PLACING LOCATE AT
NUMBER A TEST POINT RESTORER NUMBER
1 .543583020=00 9
2 +.543583020-00 8
3 52941169000 7
4 .514888410-00 6
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IV.PROGCRAM VARIABLES AND

CONSTANTS

This section contains a list of important program variables and constants with a brief

explanation of each item. It is intended as an aid to the program user who requires a more

detailed description of the program operations.

B1

B2

B3

IBR

IBRX

IEQULR

Non-subscripted variable - Bl is the probability that rank 1 of a given
block is operational at test time. This quantity is used in the calculation

of the value of placing a test point at the output of the block.

Non-subscripted variable - B2 is the probability that rank 2 of a given
block is operational at test time. It is used in exactly the same manner
as B1.

Non-subscripted variable - B3 is the probability that rank 3 of a given
block is operational at test time. It is used in exactly the same way as
B1.

Subscripted variable - This array is used to store the locations in the
block lists, It stores the ID numbers of stages with multiple inputs, in
the order in which they are encountered during the tracing of a signal
path. When the beginning of a path is reached, the program goes to the
last entry in IBR, which is the ID number of the last branch location
passed. The program then traces the next branch with an input to this

location.

Subscripted variable - This array is used to store the locations in the
connection table of the branch locations stored in IBR. This connection
table location is used as a starting point in the search for the next

branch with an input to the fan-in stage.
Non-subscripted constant - may have one of two values:
0 - a separate failure rate is read in for each unit in every stage.

1 - a failure rate is read in for each stage, and the value is used as the

failure rate for each of the three units in the stage.
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IFR - Subscripted constants - This array is the "from™ list of the connection
table. It stores the ID numbers of the stages which provide inputs to
other stages in the system model. A given system connection will initiate
two entries in the connection table: the stage providing the output will
be entered in the "from' list, IFR, and the stage receiving this output

will be entered the same location in the "to" list, ITO.

IORDRD - Subscripted variables - This array stores an ordered list of restorer
locations at which test points may be placed. The restorers are listed
in order of descending ''value'. There is a one-to-one correspondence
between the location of restorers in IORDRD, and the location of asso-
ciated values in PORDRD.

LPRINT - Non-subscripted constant - This is the printout option flag, which speci-
fies which of two printout options will be employed. LPRINT may have

one of two values:

0 - '""Normal operation' mode. The program prints a listing of input

data specifying the system analyzed, plus the final analysis results.

1 - "Debug operation' mode. In addition to the printout obtained in the
normal mode, the program prints many of the intermediate compu-

tational results.

IRL - Subscripted variable - This matrix stores the completed block lists,
after they are completed. IRL stores one complete list for each restorer

and system output.

IRST - Subscripted variable - This array holds the complete list of restorer ID
numbers. The list is compiled from the connection table, by searching
through the table for ID numbers which are greater than NOF, the num-

ber of functions, and less than 1, 000.

ITO - Subscripted constants - This array is the "to" list of the connection
table. It stores the ID numbers of stages which receive outputs of other

stages in the system model. See IFR, in this section.

IUSD - Subscripted variable - This array is used in the generation of a list of
subsystems which have multiple inputs (fan-in units). This latter list is
used in the construction of the block lists. It is constructed by searching
through the connection table for stages with two or more inputs. When

a stage ID number is put in the fan-in list NFB, then the corresponding
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KNOF

ILCT

LCT1

LL

NFB

NFI

NI

NOF

NR

NRT

location in IUSD is changed from zero to one. This assures that the
program does not examine the connection table entry repeatedly. There
is a one-to-one correspondence between connection table locations and

IUSD locations.

Non-subscripted constant - KNOF is equal to twice the number of func-
tions in the system model (KNOF = 2x NOF This is the total number of

stages in a system with NOF functions, all of which are restored.

Non-subscripted constant - LCT is the Length of the Connection Table,

the total number of connections in the system model.

Non-subscripted constant - LCT1 is equal to LCT-1. It is used as a DO

index limit for table searching.

Subscripted variables - LL stores the lengths of the block lists stored
in IRL.

Subscripted variable - This array holds a list of fan«ins; i. e., stages
having two or more inputs. NFB is used for locating branches during
the construction of block lists. It is compiled by a comparison of entries

in the connection table.

Non-subscripted variable - NFI is the total number of stages in the sys-
tem model which have two or more inputs. The value of NFI is therefore
the length of the fan-in list, NFB,

Subscripted variable - This array stores the number of inputs to each of
the stages on the fan-in list, NFB. There is a one-to-one correspondence

between entries in NFI and those in NFB.

Non-subscripted constant - NOF is the total Number of Functions in the

system model.

Non-subscripted variable - NR is used as a DO loop index. Its value at
a given time represents the location in the voter list of the voter whose

block list is being utilized.

Non-subscripted variable - NRT is equal to the total number of restorers
in the system model. Its value is computed during the construction of

the voter list, IRST.
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PF

PORDRD

TO

T1

Subscripted variables - This array stores all of the unit failure rates,
which are read in as data. It stores, also, the probability that each unit
in the system model is operational at test time. This latter item is
computed by the program. There are two storage locations in P for

each unit, or subsystem, in the system model.

Subscripted variables - This array stores the list of values computed for
all block lists. These values indicate the optimum placement of test

points within the system model.

Subscripted variables - This array stores an ordered list of the values
stored in PF. A list of the restorers associated with this ordered list
is stored in IORDRD.

Non-subscripted variable - R is the probability that the last block con-
structed is functionally operational; i.e., that at least two of its three

ranks are operational.

Non-subscripted constant - TO is the time zero of the system; i.e. the
time at which all subsystems are assumed to have been operational.
The units used for TO must be the same as those of T1 and the subsystem

failure rates.

Non-subscripted constant - T1 is the time of test. The units used for

T1 must be the same as those of TO and the subsystem failure rates.




V. PROGRAM FLOW CHART

The following pages contain a detailed flow chart of the test point allocation program.

START

@

v

READ: NUMBER ¢F INTERC$ NNECTIONS,
NUMBER OF FUNCTI$NS, CONNFCTI$N
TABLF, TIME ZER¢, TFST TIME, IEQULR
FLAG AND FAILURE RATE LIST, NUMBER
¢F ¢UTPUT V$TERS AND ASSOCIATED

ID NUMBERS.

:

WRITE INPUT DATA,
SPECIFYING SYSTEM

:

CLEAR
STORAGE

NRT=0 I

COMPILE RESTORER LIST

_ le
LD¢, 1J=1, LCT a—

I
$ IT# (I1J)

:N¢F

\V

IF

IT¢ (I11J)
1000

Dé, 1J=1, N¢F

52
IT¢ (HJB

IRST(1J)

s

v

y
ﬁRST (11)=IT (IIJ)J

NRT=NRT+1

IIJ:LCT
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COMPILE FAN-IN LIST,

NI

NFB WITH NO. OF INPUTS,

IF

1USD(I1):0

R | A
[DO, 12-13, LCT |e

VA

ITO(I12):IT(11)

NI(IIO):NI(IIO)+1]

1USD (J2)=1

IF <

12:ILCT

IA

[ NFB(110)-ITO(11) |

IF

11:LCT1




(®)
ﬁ)O,Ngl,NRT ]-——@

[ NMBR-IRST(NR)

IT$(1):NMBR

|DO, I1=1, KNSF Je- @4

IIRL(II, NR)=IFR(I)

<IRL(II, NR):IFR(J)

>
<

N

IF
IRL(IL, NR):O

IF
IFR(I):N¢F

IN

D¢ I1-1, NFI

IF
NFB(I1):IFR (1)

IF

IFR(T):1000

<

IF
I:NFI

NMBR-=IFR(I) |~
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D¢, 12=1, LCT

D¢, [3=1, KN$F

IBR(I3):ITO(12)

IF
IBR(J3):0

»| IBRX(I3)=I2




|Dé,15=1, KN F

le
g

[ MI5-KN@F +1-15 |

IF <
IBR(MI5):0

D¢16=1, NFI

NFB(16):IBR(MI5)

IBR(MI5)-O
IDX -1 BRX( MI5)+1
IBRX(MI5)=0
| DX -IBRX(MI5)+1 |
[D17-IDX, LCT Jo- <

1TO(I7):NFB(16)

IBRX(MI5)=I7
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|D$ INX-1, KN$F [+

IF

-»<_INX:KN¢F

B2=1.0

B1-1.0
LS=LL(NR)

jJD¢M1:1,LSl

[LeC-IRL(MI, NR)|

B3=1.0
LS=LL(NR)

D¢Ml1=1, LS

| L¢C=IRL(M1, NR)|

B1=1.0 —|

P(L$C, 1, 2)=EXP(P(L$C, 1, 1)%(TO-T1))
P(L$C, 2, 2)=EXP(P(L¢$C, 2. 1)¥(TO-T1))
P(L$C, 3, 2)=FXP(P(L¢C, 3, 1)¥(TO-T1))

P(L¢C,1,2)=EXP(P(L¢C, 1, 1)%(TO-T1))
B1=B1*P(L¢$C, 1, 2)

IF
M1:LS

2

R=3 #(B1%x%2 ) -2 %x(B1%x%3.)
PF(NR)=1. -((B1x x3. )/R)

C$MPUTE PR¢BABILITY
OF ¢ BSERVING A FAILURE
IN THE BL¢CK -

B1=Bl1 P(L¢C,1,2)
B2=B2 P(L$C,?2.2)
B3=B3 P(L¢C, 3, 2)

M1:LS

P

e

R-B1%B2+B1%B3+B2%B3-2. *B1%B2% B3
PF(NR)-1. -((B1# B2%B3)/R)

®
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D¢JJ=1, LS [

IBRX(JJ)=IRL(JJ, NR)

JJ: LS

2

I1-IRST(NR)
B1=PF(NR)

WRITE IBRX, LLST OF STAGES TESTED
WRITE I1, POTENTIAL LOCATION
WRITE B1, PROBABILITY OF A FAILURE

41

PF(NR)=1- | 0. 5-PF(NR)

N

LPRINT:O

B1=PF(NR)

y L
C WRITE Bl, TEST POINT VALUE)

(D— —(#)
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$RDER LIST $F VALUES |

\ J

D¢ N=1, NRT

A
CéMPR=0.

D¢ NR=1, NRTIF

C$MPR:PF(NR)

<
~

C¢MPR=PR(NR)

NINDX(N)=NR P$RDRD(N)=CP$MPR
NIX =NINDX(N)
PF(NIX)=0
< IF ‘
>
l >
D@ N=1, NRT
NT=NINDX(N)
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I$RDRD(N)=IRST(NT)

IF <
N:NRT

>

-

WRITE P$RDRD AND I$RDRD, THE

VALUE OF PLACING TEST POINT AT
LOCATION, AND C$RRESP$NDING LPCATIPNS:
SPECIFYING $PTIMUM TEST PHINT
ALL$CATI$N PATTERN

&




VIL.FORTRAN IV PROGRAM LISTING

The following pages contain a complete FORTRAN IV listing of the test point allocation

program,
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00100
00101
00103
00104
00105
00111
00117
00125
00131
00134
00135
00140
00146
00151
00152
00154
00155
00166
00171
00173
00202
00205
00211
00211
00211
00225
00230
00231
00232
00233
00234%
00235
00240
00241
00244
00244
00245
00240
00251
00254
00257
00262
00265
00270
00271
00272
00273
00275
00275
00277
00300
00301
00304
00307
00310
00313
00310
00321
00322
00323
00324
00325
00327
00332
00333
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35,

48,

65,

400

451

800

450
601

1

[P —

103
104

105
106

901
902
903
904
905
906

S07

TEST PT ALLOCATION

DIMENSION IRL(150¢75)IFR(200F,1T0(200) IRST(75)/NFB(150)
DIMENSION NI(150)¢1IBRT150) ¢ IBRX(150) LL(75)NINDX(150)IUSD(200)
DIMENSION P(150¢3¢2) PF(75) PORDRD(7S) ¢ IORDRD(75)
READ(592301)LCT»NOF

READ(52301) (IFR(IT)IT=1,LCT)

READ(5¢301) (ITO(IT) #IT=1¢LCT)

READ(59¢305)T70,T1

READ(50301) IEQULR

KNOF =2 *NOF

IF(IEQULR)450,4500451

READ(5¢307) (P(ISTe1s1) o ISTZ1KNOF)

DO 800 IST=1,KNOF

P(ISTe2,1)=P(ISTrlel)

P(IST»3,1)=P(ISTelrl)

GO TO 601

READ(5¢307) ((PUISTrIRKe1) pIRKZ193) 2 IST=1+KNOF)
READ(5r301)LPRINT

WRITE(6/,309)

WRITE(6+310) (JFRII)2ITO(I) v I=1sLCT)
WRITE{(6,311)NOF

WRITE(6+312)T0rT1

WRITE(62314) (NeP{Ne1o1) sP(Ny201) sPINe301) s P(N+NOF»1917sP(N+NOFr2»1

YeP(N+NOF»3s1) eN=LeNOF)
CLEAR STORAGE

DO 108 LL1=1,KNOF
IBR(LL1)=0

IBRX(LL1)=0

NI(LLL)=0

NFB(LL1)=0

1USD(LL1)=0

DO 108 NR=1,NOF

IRST(NR) =0

IRL(LL1/NR)=0

R=1.

COMPILE RESTORER LIST

NRT=0

DO 102 IIJu=1,LCT
IF(ITO(ITJ)=NOF)102¢1020103
IF(ITO(IIU)=1000)1040102+102
DO 101 1J=1,NOF
IFCITO(IIJ)=IRST(IJ))10501029105
IF(IRST(IJ))106+106,101
IRST(IJ)ZITO(ITY)

NRT=NRT+1

60 TO lo2

CONTINUE

CONTINUE

COMPILE FAN=IN LISToNF3»AND NO, OF INPUTSHNI
110=1

LCT1=LCT=1

DO 908 11=1,LCT1
1IF(IUsSD(11))901,901,908
13=11+1

DO 906 12=I3.LCT
IF(ITO(I2)=1TO(I1))906+902/,906
IF(NIC(IL10))903+903s904
NI(110)=2

GO TO 905

NI(I10)=NI(110)+1
1usp(Ii2)=1

CONTINUE
IFINI(I10))906,908+907
NFB(I10)=ITO(I1l)

110=110+1

»




00334
00336
00336
00337
00342
00343
00346
00351
00353
00356
00361
00364
00365
00366
00370
00373
00376
00377
00400
00403
00406
00410
00410
ooui1
00411
ooul2
00413
00416
00421
00424
00427
00432
00433
00434
00435
00436
00440
00440
00442
00445
00446
00451
0045y
00457
00460
00463
00464
00465
00466
00467
00470
00473
00476
00501
00502
00503
00504
005006
00510
00512
00515
00520
00521
00522
00524

68'
69,
70,
71,
72.
73,
T4,

76.
77.
78,

80,
81,
a2,
83,
8“.
85,
86,
87,
88,
a9,

91,

92,

93.

94,

95,

96.

97.

98,

99,
100,
101,
io2,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
1le,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,

908

Ceem=<BEGIN COMPILING ISOLATED BLOCKS

111
9

3
2

14
16

15
4
109
110
5

7

CONTINUE
NFI=110=-1

DO 70 NR=1sNRT

NMBR=IRST (NR)

DO 3 I=1,LCT
IFCITO(I)=NMER) 320 3
CONTINUE

DO 15 II=1+KNOF
IFCIRLCITIONR)=IFR(I))14e25014
IF(IRL{IIPNR))L16016,15
IRL(IIPNR)IZIFR(Y)

GO TO 4

CONTINUE
IF(IFR(I)=NOF)5,5+109
IF(IFR(I)=1000)25,1104110
IRL(II'NR)=0

GO TO 25

DO 7 I1=1,NFI]
IFINFB(IL)=IFR(TI))7+847
CONTINUE

NMBRZIFR(I)

C==r==]FR IS NOT A FAN=IN STAGE

GO TO 9

C==r==IFR IS A FAN-IN STAGE

8

11

18
20
19

12
10

Cow===END OF BRANCH~-==SEARCH FOR NEXT BRANCH

25

27
29
30

22
31

33
35
32
28
26
38
39

NICI1)=SNI(I1)=-1

00 10 I2=1.LCT
IFCITO(I2)=IFR(I)) 10s11r10
DO 12 I3=1rKNOF
IFCIBR(I3)~1T0(12))18419+,18
IFCIBR(I3))20,20012
IBR{I3)=ITO(I2)

IBRX(13)=12

I=12

GO To 2

CONTINUE

CONTINUE

DO 26 IS=1»KNOF
MIS=KNOF+1-15
IF(IBRIMIS) }26026027

DO 28 l6=1eNF]
IFINFB(16)=1BR(MI5))28¢29,28
NI(I6)=NI(I6)=1
IF(NI(I6))30:30s22
IBR(MI5)=0
IOX=IBRX(MI5)+1

IBRX (MI%) =0

GO 7O 31
IOXSIBRX(MIS)+1

DO 32 I7=10x/LCT
IFUITO(IT?)=NFB(I6)) 32133032
IF(IBR(MIS) 35135934
IBRX(MIS) =17

1=17

GO T0 2

CONTINUE

CONTINUE

CONTINUE

DO 39 INX=1,KNOF
IF(IRLUINXPNR))38+38¢39
LL (NR)ZINX=1

60 TO 502

CONTINUE

LL (NR)=KNOF
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00525
00530
00531
00532
00535
00536
00537
00541
00542
00543
00544
00545
00546
oo547
00550
00553
00554
00555
00556
00557
00560
00561
00563
00564
00565
00570
00573
00575
00570
00577
00602
00610
00613
00bl4
00617
00620
00620
00623
00623
00625
00630
00630
00631
00634
00637
00640
00641
00643
00643
00644
00645
00646
00650
00653
00654
00654
00656
00666
00667
00670
00671
00672
00673
00673
00673
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131,
132,
133.
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
150,
151,
152,
153,
154,
155,
156,
157,
158,
159,
160.
161,
162,
163,
164,
165,
166,
167,
168,
169,
170,
171,
172,
173,
174,
175,
176.
177.
178,
179,
180,
181,
182,
183,
184,
185,
186,
187,
188,
189,
190,
191,
192,
193,
194,
195,

502 IF(IEQULR)503,503:453

453 B1=1,0
LS=LL{NR)

DO 454 M1=1,LS
LOC=IRL (M1sNR)
P(LOC»1,2)=EXP{P(LOCr1r1)%(T0LT1))

454 B1=BlsP(LOC/s1s2)
R=3,%(Blx%x2,)=2.x{B1*%x3,)
PF(NR)=1,~{(B1%*3.)/R¥
G0 TO 619

503 Bl=1.0
B2=1.0
B3=1.0
LS=LL (NR)

DO 504 M1=1,LS

LOC=IRL (M1+NR)
P(LOC»1»2)=EXP(P(LOCe1,»1)%(T05T1))
PILOC»2+2)=EXP(PILOCP201)%(T0CT1))
P(LOCs392)EXP(P(LOCe3¢1)%x(TO&T1))
BL=B1xP(LOC,»1,2)

B2=B2*P(LL0Cs2+2)

504 B3zB3*xP(LOC,3,2)
R=B1*32+B1*B3+B2x33=-2,*xB1«xR2*8B3
PFINR)=1,~((B1*B2%B3) /R)

619 IF(LPRINT)621,621+620

620 DO 623 JJ=1,LS

623 IBRX{(JJ)=IRL(JJINR)
11=IRST(NR)

B1=PF (NR)

WRITE(6,»315)11

WRITE(6+316) (IBRX(JJ)»JJ=1,LS)
WRITE(69317)B1

621 PFINR)=1,=-ABS{(0.5=PF(NR))
IF(LPRINT)70¢700622

622 B1l=PF(NR)

WRITE(6,318)B1
Cm====MAKE IRL LIST FOR NEXT RESTQRER OnN LIST
70 CONTINUE
Ce====0RNDER LIST OF FAILURE PROSBABILITIES
DO 4035 N=1*NRT
COMPR=0,
Come==FIND HIGHEST OF REMAINING (PFIS
DO 402 NR=1,NRT
IF (COMPR=PF (NR) 4014010402
401 COMPR=PF (NR)
NINDX (N)=NR
402 CONTINUE
PORDRD (N)=COMPR

C=====DELETE HIGHEST PF FROM PF (MR)
NIX=NINUX (N)
PF(NIX)=0

403 CONTINUEL
DO 404 N=1eNRT
NT=NINDX (N)

404 TORDRU(N)IZIRST(NT)

Coece==pPRINT RESULTS
WRITE(6,490) (NePORDRU(N) » IORDRD (N} e N=1¢NRT)

705 GO TO 400

301 FORMAT(1415)

305 FORMAT(2F10,0)

307 FORMAT(6El2,6)

309 FORMAT(23HITEST POINT ALLOCATIONS///)

310 FORMAT(24H SYSTEM INTERCONNECTIONS//3X+4THFROM TO FROM TO

170 FROM T0O FROM TO/3X14TH —wmm—= -
2~ mmmea==/{(5(16r14)))

FROM



00674 196, 311 FORMAT(21HOTHIS SYSTEM CONTAINS,I3+1Xs9HFUNCTIONS/)
00675 197, 312 FORMAT(12H TIME ZERO =F7.0/12H TEST TIME =F7.0//)
00676 198, 314 FORMAT(19H UNIT FAILURE RATES//11X¢30H==enmemaoeafUNCTIONS===am===

00676 199, 1==18Xr30H=mummmmmme RESTORERS==== ccamm=/2X+ SHSTAGE » 4 X s 6HRANK 106X 0
00676  2u0, 26HRANK 206Xy 6HRANK 308X+ 6HRANK 1,6X16HRANK 216X s6HRANK 3/ (1512X1E1
00676 201, 31,602(E12.6)1E14,602(E12.6)))

00677 202, 490 FORMAT(9HLTEST PT.s5Xs16HVALUE OF PLACING,7Xs9HLOCATE AT/8H NUMBE
00677 203, 1R+8Xr12HA TEST POINT#6Xs1SHRESTORER NUMBER//(I16/E23.9+113))

00700 204, 315 FORMAT(40H1POTENTIAL TEST LOCATION AT RESTORER NO,I5)
00701 205, 316 FORMAT(14H TESTED STAGES//(5110))
00702 206, 317 FORMAT(40H PROBABILITY THAT A FAILURE IS OBSERVED=ZEL1ll.6)

00703 207, 318 FORMAT(36H VALUE OF PLACING A TEST POINT HERE=Ell.6)
00704 208, END

END OF LISTING. 0 xDIAGNOSTIC* MESSAGE(S),
PHASE 1 TIME = 1 SEC,
PHASE 2 TIME = 0 SEC,
PHASE 3 TIME = 1 SEC.
PHASE 4 TIME = 0 SEC,
PHASE 5 TIME = 0 SEC.
PHASE 6 TIME = 1 SEC.
TOTAL COMPILATION TIME = 3 SEC
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1. INTRODUCTION

The reliability analysis program calculates an estimate of the reliability of a modularly
redundant system, using the results obtained from a limited number of test points. It pro-
vides an extremely simple means of determining the probability that a system will be func-
tionally operational at the end of a given time period. The program is completely compatible
with the test point allocation program described in Appendix A. The failed/working informa -
tion generated by the test points allocated by the latter program is used directly in the relia-

bility estimation program.
The program is written in FORTRAN IV; it is therefore highly machine-independent.
A, WHAT THE PROGRAM DOES

The reliability analysis program computes an estimate of the reliability of a triple-
modularly redundant digital system, given that the system is functionally operational at the

time of test, and given the failed/working results of a limited number of test points.

The reliability estimate produced by the program is based on the Block Model technique
described in section II, part B of the body of this report. In order to include test information
in the estimate, a modified version of the technique has been developed for use in the pro-
gram. The modified technique is also described in the body of this report, in section II,

part C.

The program uses three distinct time variables: TO’ Tl’ and TM, as illustrated in

figure B-1. It is assumed that, at T, the system is completely failure-free; i. e., that

O?
every system component is operational. The time period of interest to the user, i.e., the
some

mission time, is the period from T to TM. The limited testing is performed at T

0 1’

time between T0 and TM. It is further assumed, as mentioned above, that the system is

functionally operational at T_; i.e. thatat least two of the three subsystems in every stage

17
are operational at test time,

In addition to the reliability estimate based on tests performed at T,, the program

1’
contains an option for computing an estimate of the initial relianility at To’ with no test data,

but with the assumption that all subsystems are operational.
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Figure B-1. The Time Variables Used

B. SYSTEM CONFIGURA TION LIMITATIONS

The reliability analysis program can be applied only to majority-voted redundant digital
systems. The systems must, in addition, be order-three redundant; i.e., all stages, in-
cluding voter stages, must be triplicated. Within these limitations, there are no restrictions
on the configuration of the system. Virtually any degree of system complexity can be handled
by the program. The size of the system which can be analyzed by the program is limited only

by computer running time available, and individual computer storage limitations.
C. TEST POINT INFORMA TION REQUIRED

A1l of the test points which produce information usable by the reliability analysis pro-

gram are located at the inputs of restorers.

In the program, therefore, the location of each test point is specified by the restorer
at whose input the test point is located. The test result from each of these test points is read
into the program in the form of the rank, if any, which is observed as incorrect. Since the
system is assumed to be functionally operational at the time of the test, only one rank can

be failed at each test point location.

A summary flow chart of the program is shown in figure B-2. A detailed flow chart

appears in section V of this appendix.
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Figure B-2. Summary Flow Diagram of the Reliability Analysis Program
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Il. HOW TO USE THE PROGRAM

The system to be analyzed is first converted to simple block diagram form. A system
model is then constructed which is very similar to the block diagram. Finally, an ID number
is assigned to each stage of the system,according to a procedure described below. The system
model thus completed, the exact system configuration can be read into the program. The nec-

essary input data describing the system is compiled directly from the system model,

The following paragraphs describe, first, the construction of the system model, and

secondly, the input data required by the program.
A. SYSTEM MODEL

If the system to be analyzed has first had test points allocated to it by the test point al-
location program, the same system model used for that program can be used for the reliability

analysis program. If not, this section describes the construction of the model.

The first step in the construction of the system model is the conversion of the system to
block diagram form, Each of the "boxes' in the block diagram indicates either a function
stage or a restorer stage. The usual procedure is to use boxes to indicate the function stages,
and circles to indicate restorer stages. All interconnections between stages are shown in the
diagram, as well as the location of inputs from outside the system and outputs to external
equipment. A failure rate is then assigned to each of the three units, or subsystem in every

stage,
1. Artificial Stages

The next step in the modeling procedure is the addition to the block diagram of
artificial stages. There are two places in the system at which they might be added: at all of
the system inputs and at some of the system outputs. The following paragraphs describe all

of the situations in which these artificial stages are used.

a) Artificial Input Stages
The purpose of placing artificial stages at system inputs is to shorten the program

running time, by eliminating unnecessary table searching,

Figure B-3 is a block diagram of a simple system to which the program could
be applied. The two system inputs are labeled A and B. An artificial stage is added to both
in figure B-4. The input labels A and B in figure B-3 have been replaced by the two artificial
input stages.
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INPUTS

v

O —O—
—0

Figure B-3. System Block Diagram, Input Stages Needed.

4

__.O,_. . =O :

-
> —

Figure B-4, Input Stages Added to Figure B-3.

The addition of these input stages completes the model for the system shown. Any failure rate,
including zero, can be applied to the artificial inputs because the program does not include

these failure rates in any calculations,
b) Artificial Output Stages

The first place at which an artificial output stage must be added is at every
system output which does not come directly from a restorer. This situation is shown in
figure B-5. The two system outputs are labeled A and B. Output B is not restored, so an

artificial restorer stage must be added, as shown in figure B-6.
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O O
O

SYSTEM
OUTPUTS
-+ B
Figure B-5. Artificial Output Stage Needed.
~
—.{ \ﬁ > A
SYSTEM
MODEL
OUTPUTS
B
J

Figure B-6. Output Stage added to Output B of Figure B-5.

There is one other situation in which an output stage must be added. This occurs

when the output of an internal restorer is also a system output, and a test point is located at
this output. Since the program considers test points placed only at restorer inputs, the sys-
tem model must be altered. The block diagram shown in figure B-7 illustrates this case,
Assume that the user has placed a test point at output A, as shown by the X in the figure.
Since the program considers only restorer inputs as test point locations, an artificial re-
storer stage must be added at point A. The system model permits restorers to be placed
only at the outputs of function stages, however, so an artificial function stage must be in-
serted between the system restorer and the artificial output restorer. The units in this

function stage must be assigned zero failure rates, so that they do not affect the system
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OUTPUTS
( }——es

Figure B-7. Test Point at Output A,

reliability calculatons. The failure rates for the artificial restorer stage will not enter into

any reliability calculations, so their values are unimportant.
2. Stage ID Numbers

The final step in the construction of the system model is the assignment of an ID
number to every stage in the system. The procedure is as follows. First, the function
stages, excluding artificial input stages, are numhered from 1 to N, where N is the total
number of actual function stages. The restorer stages are then numbered in the following
manner. The restorer of function i is assigned an ID number of N + i. The resistor of func-
tion 1 is assigned an ID number of N + 1, and the restorer of function N has an ID number of
2N, etc. This numbering procedure enables the program to distinguish between functions
and restorers. Finally the artificial input stages are assigned ID numbers of 1,000 or

greater, in any order, This enables the program to recognize system inputs when tracing

signal paths, thereby eliminating much unnecessary table searching. (For systems containing

a total number of stages, excluding artificial input stages, of 1,000 or greater, the number
1,000 may be raised in the program by changing the instruction on lines 55 and 96 of the pro-

gram listing.)

The numbering of the system model stages in the above manner completes the con-
struction of the model, The program input data defining the system is taken directly from

the resulting model,
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B. INPUT DATA CARDS REQUIRED

This section lists the necessary input data cards for the reliability analysis program.
The cards are listed in the order in which they must appear in the data deck. Corresponding
FORMAT statements and READ specifications for each item are also shown. Each of the
following paragraphs describes one data card or group of data cards. (NOTE: The FORMAT
(1415) is used to read many of the data cards which have less than 14 items. It is simply a

generalized FORMAT, used to reduced the number of separate FORMAT statements. )

LCT, NOF. FORMAT (1415). READ LCT, NOF.

2 =

LCT is the length of the connection table, i.e., the total number of interconnections in
the system model. NOF is the total number of functions in the system model, excluding re-

storers,
IFR. FORMAT (1415) READ (IFR (IT), IT = 1, LCT).

IFR is the list of stages which provide inputs to other stages in the system model. These
stages include any artificial input stages. The position of each entry in IFR must be exactly

the same as the position of the corresponding stage in the ITO list, which receives the input.
ITO. FORMAT (141I5). READ (ITO (IT), IT = 1, LCT).

ITO is the list of stages which receive outputs from other stages in the system model,
These stages include any artificial output stages in the model., The position of each entry in
ITO must be exactly the same as the position of the corresponding stage in the IFR list, which

provides the input.

TO, T1, TM. FORMAT (3F10.0). READ TO, T1,TM.

——2 3

TO is the time zero of the system model; i. e., the time at which all system components
are assumed to have been operational, T1 is the time of the test. TM is the end-of-mission
time. The units used for all times must, of course, correspond to that used for the unit

failure rates.
ITZREL. FORMAT (14I5). READ ITZREL.

This is the time-zero-reliability flag, which specifies whether the program will com-
pute the system reliability estimate at time zero, without test data (ITZREL = 1), or not
compute it (ITZREL = 0).

NTP. FORMAT (14I5). READ NTP.

This is the total number of test points applied to the system.

B2-5



ITEST. FORMAT (1415). READ ((ITEST (NR, NFR), NFR - 1,2), NR = 1, NTP).

This is the test results data. The data consists of a list of the restorers that have test
points at their inputs, together with a list of the rank observed as failed at each of these
locations. The list of test point locations as read in, is alternated with the list of failed

ranks; i. e., each restorer number is followed by the rank observed as failed at that location,

IEQULR. FORMAT (1415), READ IEQULR.

This equal reliability flag indicates, if it equals one, that all three units in every stage
have equal failure rates. If different failure rates are assigned to the units of any stage,

IEQULR is made zero and a separate failure rate is read in for every unit in the system,
P (IST, 1, 1). FORMAT (6E 12.6). READ (P (IST, 1, 1), IST = 1, KNOF).

This is the list of failure rates for the system units. One failure rate is read in for
each stage in the system, and this value is used for the three units in the stage. The failure
rates for the function stages are read in first, followed by those of the restorer stages. For
the case of a function which is not restored, the field corresponding to the appropriate re-
storer number may be left blank, The failure values for non-present voters is not used by
the program. This READ stagement is used only when IEQULR = 1. If IEQULR = 0, the

following read statement is used.

P(IST, IRK,1). FORMAT (6E12.6). READ (P (IST,IRK, 1), IRK = 1,3), IST = 1, KNOF).

vl Suinafinll Simiwivimin Mt At

This is the list of failure rates for the system units, One failure rate is read in for
each unit in the system. The failure rates of the three units in a stage are read in consecu-
tively, and values are read in according to stage ID numbers; i. e. function stages first, fol-
lowed by restorer stages. This READ statement is used only when IEQULR = 0. I«
IEQULR = 1, the preceding read statement is used.

NOV. FORMAT (1415). READ NOV.

This constant represents the number of output voters whose stage reliability estimates

are to be included in the overall system reliability estimate.
NVR (NV). FORMAT (1415). READ (NVR (NV), NV = 1, NOV).

This is the list of ID numbers for output voter stages whose reliability estimates are
to be included in the system reliability estimate. This READ statement is used only when

NOV is non-zero,
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LPRINT. FORMAT (141I5). READ LPRINT.

This is the printout option flag, which specifies which of two printout modes will be
employed. When LPRINT= 0, the "normal operation mode is used, in which the program
prints only a listing of input data and final results of the analysis, When LPRINT= 1, the
"debug operation" is employed, in which the program prints the above information, plus

many of the intermediate computational results.

B2-7/8



lIl. OUTPUT TO BE EXPECTED

This section outlines the printout to be expected from the test point allocation program.
The first part of the section describes the output obtained during normal operation of the pro-
gram. Following this is a description of the output available during possible debugging
operations, providing the user with a more extensive view of the intermediate computational
results. An input data constant, LPRINT, specifies which of the output options will be used

in any one program run,
A. NORMAL OPERATION

The normal operation printout mode is specified by setting the input data constant,
LPRINT, to zero. In this mode, the program prints, first, a listing of the input data speci-

fying the system which has been analyzed, and, secondly, the results of the analysis.

The first item to be printed is a complete list of the system interconnections, This
listing is followed by the statement of the total number of system function stages, then the

zero time of the system, TO, the time of test, T1, and the time of the mission end, TM.

The test data used in the reliability estimation are then printed. This is a two column
list. The {first column contains the ID number of each restorer at which a test point is located.
The second column lists the rank that is observed as failed at each of the test locations. As

mentioned earlier, this item is zero if no erroneous signal is observed at the test point.

Next, the failure rate of each unit, or subsystem, is listed. The failure rates of the
units in each restorer are listed on the same line as those of the corresponding function

stage,

The printout of the results of the analysis consists of the statement of the estimate of
the system reliability at test time, In addition, if the user has specified the calculation of

the initial, time zero reliability estimate, this value is printed.

A sample of the printout obtained during the normal operation mode is shown on the

following page.
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POST=TEST RELIABILITY ANALYSIS
SYSTEM INTERCONNECTIONS
FROM TO FROM 10 FROM TO FROM TO FROM TO

1000 1 1 &6 6 2 6 5 5 3
5 4 2 7 3 8 4 9

THIS SYSTEM CONTAINS 5 FUNCTIONS

TIME ZERO = 0.
TEST TIME = 50,
MISSION TIME = 100,
TEST DATA

RESTORER RANK
TESTED FAILED

7 0
8 1
UNIT FAILURE RATLS
——————————- FUNCTIONS======- —-w- e=eeccesoses RESTORERS===maw= ——
STAGE RANK 1 RANK 2 RANK 3 RANK 1 RANK 2 RANK 3
1 .100503-03 ,1U0503=03 ,100503-03 .100503-03 ,100503=03 .100503-03
2 ,100503=-03 ,100503-03 ,100503~03 «100503-03 .100503-03 ,100503~03
k) ,100503=03 ,100503=-03 ,100503-03 ,100563-03 ,100503~03 «100503-03
4 ,100503=03 ,100503-03 ,100503-03 «100503-03 ,100503-03 .100505-03
5 ,100503=03 .100503-03 ,100503=-03 .100503-03 .100503-03 ,100503=-03
BEFORE TESTeSYSTEM MISSION RELIABILITY (TIME ZERO TO MISSION END)= «992469-00
AFTER TEST+ SYSTEM MISS10W RELIABILITY (TEST TIME TO MISSION END)= «954256=00

B. DEBUG OPERATION

The debug operation printout mode is specified by setting the input data constant,
LPRINT, to one. Inthis mode, the program prints all of the information provided by the nor-
mal operation mode. In addition, further information is printed to enable a user to examine

some of the intermediate computational operations in greater detail.

The first addition item printed, following the input data listing, is the storage block
IUNKN. This is a list of all of the stages which are in untested blocks; i.e., stages which
are failure - linked to untested restored functions, In this two column listing, the first col-
umn lists every stage in the system; the second column contains a 1 (one) if the corresponding

stage is in an untested block, and a 0 (zero) if a stage is not in an untested block.

The next listing is the storage block IWNORK. This is a list of all subsystems which the
test data indicate are operational at test time. The subsystems are listed by stage and rank,
A 1 (one) indicates that a given subsystem is definitely operational at test tims, and a 0 (zero)
indicates either that the subsystem is failed or that the operational state cannot be determined

from the data.

The block IFAIL is printed next. In this listing, a non-zero entry specifies that the
subsystem is in the failed rank of a tested block. The value of the entry is equal to the number

of tested-failed ranks in which the subsystem is located.
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The next listing contains the two probabilities which together form the reliability esti-
mate of each subsystem in the system, The first is the probability that a given subsystem is
operational at test time, The second is the conditional probability that the subsystem will be
operational at the mission end, given that it was operating at test time, The product of these

is the subsystem reliability estimate used in the estimation of the system reliability.

Following this are the lists of stages which form each of the untested blocks. Each

block list is followed by the product of the reliabilities of the blocks listed.

The final additional items printed during the debug operation mode are the lists of stages
which form each of the tested blocks in the system, Each list is followed by the product of the
reliabilities of the blocks listed at that point. The final system reliability estimate is the

product of the untested block reliability estimates and the tested block reliability estimates.

A sample of the printout obtained during the debug operation mode is shown.

POST=TEST RELIABILITY ANALYSIS

SYSTEM INTERCONNECTIONS

FROM TO FROM TO FROM TO FROM TO FROM TO

1000 1 1 6 6 2 (] L) 5 3
5 4 2 7 k) 8 4 9 ,

THIS SYSTEM CONTAINS 5 FUNCTIONS

TIME ZERO 0,
TEST TIME S50,
MISSION TIME = 100,

TEST DATA
RESTORER RANK
TESTED FAILED
7 0
8 1

UNIT FAILURE RATES

mmemmecccacFUNCTIONS = meemame=x memccece=eeRESTORERGmm=mmemane

STAGE RANK 1 RANK 2 RANK 3 RANK 1 RANK 2 RANK 3
i «100503-03 ,100503-03 ,100503=03 «100503=03 ,100503=03 ,100503=-03

2 «100503~03 ,100503-03 ,100503~03 +100503=-03 4100503=-U3 ,100503=-03

3 «100503-03 ,100503=-03 ,100503~03 ¢100503~03 +100503~U3 .100503-03
4 +100503-03 ,100503=03 ,100503=03 ¢100503-03 ,100503=03 ,100503=~03

S +100503~03 ,100503=-03 ,100503=03 +100503-03 ,100503-03 ,L,100503-03
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STAGES IN UNTESTED BLOCKS

STAGE 1=YES/0=NO

COUP~NOUMEGN+-
OO OO

[

UNITS OBSERVED AS OPERATIONAL

STAGE ==RANK ===

OVWE~NOCOUFLNF

COOQCOMF OO O MO,
COOOO RO RMRRON
COOCOF MO MMROWL

-

UNITS IN TESTED FAILED RANKS

STAGE

[]
]
P
>
<
x
[}
[]
[]

CLCENOCUFULNL-

COO0OO0OCHOQLOO»P
oo oOO0OOO0ON
D000 00O0O00O0O UL

-

SUBSYSTEM PROBABILITIES

PROBABILITY OF OPERATION AT T1 PROBABILITY OF OPERATION AT TM»
GIVEN THAT OPERATIONAL AT T1
STAGE RANK 1 RANK 2 RANK 3 RANK 1 RANK 2 RANK 3
1 «394987 » 994987 « 994987 « 994987 994987 « 994987
2 1,000000 1,000000 1,000000 0994987 994987 « 994987
k) .000000 1,000000 1,000000 +000000 « 994987 994987
4 «994987 «994987 + 994987 + 994987 ¢ 994987 0994987
5 «498744 1,000000 1,000000 «994987 1 99u987 0994987
6 1,000000 1,000000 1,000000 «994987 «994987 0994987
7 994987 «994987 « 994987 « 994987 + 994987 994987
8 «994587 + 994987 «994987 2994987 2994987 e 994987
9 « 994987 994987 » 994387 994987 994987 « 994987
10 « 994987 «994987 « 994987 994987 « 994987 2994987
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UNTESTED BLOCKS RELIABILITY
UNTESTED BLOCK NO. 1 CONTAINS THE FOLLOWING STAGES

1
PRODUCT OF RELIABILITIES OF ALL UNTESTED BLOCKS AUOVE= ,999777-00

UNTESTED BLOCK NO, 2 CONTAINS THE FOLLOWING STAGLS

4
5

6
PRODUCT OF RELIABILITIES OF ALL UNTESTED BLOCKS A4MOVE= .984417-00

TESTEL BLOCKS RELIABILITY
TESTED BLOCK NO, 1 CONTAINS THE FOLLOWING STAGES

2

6
PRODUCT OF KELIABILITIES OF ALL TESTEU BLOCKS ABOVE= .999702-00
TESTED BLOCK NO, 2 CONTAINS THE FOLLOWING STAGES

3

5

6
PRODUCT OF KELIABILITIES OF ALL TESTED BLOCKS ABOVE= ,970010=-00

BEFORE TEST»SYSTEM MISSION RELIABILITY (TIME ZERO T0O MISSION END)= «992469=-U0
AFTER TESTs SYSTEM MISSION RELIABILIYY (TEST TIME TO MISSION END)= » 954256-00
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IV.PROGRAM VARIABLES AND
CONSTANTS

This section contains a list of important program variables and constants with a brief
explanation of each item. It is intended as an aid to the investigator who requires a more

detailed description of the program than is provided by a program user's manual,

IBR Subscripted variable - This array is used during the construction of the block
lists. It storesthe ID numbers of stages with multiple inputs, in the order in
which they are encountered during the tracing of a signal path, When the begin-
ning of a path is reached, the program goes to the last entry in IBR, which is
the ID number of the last branch location passed. The program then traces the

next branch with an input to this location.

IBRX Subscripted variable - This array is used to store the locations in the connection
table of the branch locations stored in IBR. This connection table location is used
as a starting point in the search for the next branch with an input to the fan-in

stage.
[EQULR Non-subscripted constant - may have one of two values:
0 - a separate failure rate is read in for each unit in every stage.

1 - a failure rate is read in for each stage, and the value is used as the failure

rate for each of the three units in the stage.

IFAIL Subscripted variable - This array is used to store the locations of all units which
appear in the failed rank of a tested block. There is a one-to-one correspondence
between the locations in IFAIL and the locations in the system. When a unit in a
given system location is found in a failed rank, the corresponding location in

IFAIL is increased by one.

IFR Subscripted constants - This array is the "from" list of the connection table. It
stores the ID numbers of the stages which provide inputs to other stages in the
system model. A given system connection will initiate two entries in the con-
nection table: the stage providing the output will be entered in the "from" list,
IFR, and the stage receiving this output will be entered the same location in the
"to"" list, ITO.
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LPRINT

IRL

IRST

ITEST

ITO

ITZREL

IUNKN

IUSD

B4-2

Non-subscripted constant - This is the printout option flag, which specifies which
of two printout options will be employed. LPRINT may have one of two

values:

0 - "Normal operation' mode. The program prints a listing of input data specify-

ing the system analyzed, plus the final analysis results.

1 - "Debug operation' mode. In addition to the printout obtained in the normal

mode, the program prints many of the intermediate computational results.

Subscripted variable - This matrix stores the completed block lists, after they

are completed. IRL stores one complete list for each restorer and system output.

Subscripted variable - This array holds the complete list of restorer ID numbers.
The list is compiled from the connection table, by searching through the table for
ID numbers which are greater than NOF, the number of functions and less than

1, 000.

Subscripted constants - This array stores the test point data., There are two
entries for each test point: The first entry is the restorer before which the test
point is located; the second entry is the rank that was observed as failed. If a

given test point indicates no failure, the rank number is zero.

Subscripted constants - This array is the "to'' list of the connection table, It
stores the ID numbers of stages which receive outputs of other stages in the system

model, See IFR, in this section.

Non-subscripted constant - This is the Time - Zero - Reliability flag. It may have

one of two values:

0 - The program does not compute the initial system reliability.
1 - The program computes the initial reliability of the system at time zero, as-

suming that all units are operational.

Subscripted variable - This matrix holds a list of stages which are included in
untested blocks. IUNKN is initially set to zero, and ones are inserted in appro-
priate locations in accordance with the test data and the block lists. There is a

one-to-one correspondence between the stage ID numbers and the IUNKN locations,

Subscripted variable - This array is used in the generation of a list of subsystems
which have multiple inputs (fan-in units). This latter list is used in the construc-
tion of the block lists. It is constructed by searching through the connection

table for stages with two or more inputs, When a stage ID number is put in the

'




l

IWORK

KNOF

LCT

LCT1

LL

NFB

NFI

NI

NOF

NOv

fan- in list NFB, then the corresponding location in IUSD is changed from zero to
cne. This assures that the program does not examine the connection table entry
repeatedly. There is a one-to-one correspondence between connection table

locations and IUSD locations.

Subscripted variable - IWORK stores the locations in the system model of units
which are in working ranks of tested blocks. There is a one-to-one correspondence
between the stage and rank locations in the model, and the IWORK locations. When
a subsystem is observed to be in the working rank of a tested block, the cor-

responding location in IWORK is changed from zero to one.

Non-subscripted constant - KNOF is equal to twice the number of functions in the
system model (KNOF = 2 X NOF). This is the total number of stages in a system

with NOF functions, all of which are restored.

Non-subscripted constant - LCT is the Length of the Connection Table, the total

number of connections in the system model.

Non-subscripted constant - LCT1 is equal to LCT - 1. 1t is used as a DO index

limit for table searching.
Subscripted variables - LL stores the lengths of the block lists stored in IRL.

Subscripted variable - This array holds a list of fan-ins; i. e., stages having two
or more inputs. NFB is used for locating branches during the construction of

block lists., Tt is compiled by a comparison of entries in the connection table.

Non-subscripted variable - NFI is the total number of stages ir the system model
which have two or more inputs. The value of NFT is therefore the length of the
fan-in list, NFB,

Subscripted variable - This array stores the number of inputs to each of the stages
on the fan-in list, NFB. There is a one-to-one correspondence between entries

in NFT and those in NFB.

Non-subscripted constant - NOF is the total Number of Functions in the system

model,

Non-subscripted constant - NOV is the total Number of Output Voters whose re-
liability estimates are to be included in the system reliability estimate. Since

the blocks consist only of inputs to voters, any output voters will not be included

in the estimation of system reliability. NOV indicates to the program, if non-zero,

that there are NOV voters whose reliability estimates must be included separately.
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NR

NRT

NTP

PP

PTSTD

PUNT

B4-4

Non-subscripted variable - NR is used as a DO loop index. Its value ata given
time represents the location in the voter list of the voter whose block list is

being utilized.

Non-subscripted variable - NRT is equal to the total number of restorers in the

system model. Its value is computed during the construction of the voter list,

IRST.

Non-subscripted constant - equal to the total Number of Test Points in the test

point list, ITEST.

Subscripted constants - This is a list of output voters whose reliability estimates
are to be included in the system reliability estimate. This list is read into the

program.

Subscripted variables - This array stores:

1. Unit failure rates.

2. Probability that a unit is working at test time.

3. Probability that a unit will operate until mission end, given that it was
working at test time,

The first item is read in. The second and third items are computed from the

first, in accordance with the test data. There are three locations in P for

every unit, or subsystem, in the system model.

Subscripted variables - This array stores the probabilities that each rank in
every block is working at test time. There are two locations available for each
rank in each block. The first location the probability without test data. The
second location stores the probability with test data, if it is necessary to change

the probability.

Non-subscripted variable - PTSTD stores the reliability estimate for all tested

blocks. It is made up of the product of the tested blocks' reliability estimates.

Non-subscripted variable - PUNT stores the reliability estimate for all untested

blocks. It is made up of the product of the untested blocks' reliability estimates.

Non-subscripted variable - R is the initial reliability of the system at time zero,
without the inclusion of test information. In the calculation of this value, it is

assumed that all subsystems are operational.




™

TO

T1

Non-subscripted variable - REL is the system reliability estimate, calculated
at test time, and based on the test data. REL is the product of PTSTD and
PUNT.

Non-subscripted constant - TM is the time of the mission end. The units of TM

must be the same as the units of T1, TO, and the subsystem failure rates.

Non-subscripted constant - TO is the time zero of the system; i.e. the time at
which all subsystems are assumed to have been operational. The units used for

TO must be the same as those of T1, TM, and the subsystem failure rates.

Non-subscripted constant - T1 is the time of test. The units used for T1 must

be the same as those of TO, TM, and the subsystem failure rates.
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V. PROGRAM FLOW CHART

The following pages contain a detailed flow chart of the reliability analysis program.

o

I )
READ: NUMBER OF INTFRCONNFCTIONS,
NUMBEFR OF FUNCTIONS, CONNECTION
TABLE, TIME 2FRO., TFST TIME, MISSION
TIME, I'T 2RFL FLAG, NUMBER OF TEST
POINTS, TIST RFSULTS, IFQUER FLAG
AND FAILURF RATE LIST. NUMBFR OF
OQUTPUT VOTFRS AND ASSOCIATED ID NUMBERS

|

WRITE INPUT DATA,
SPECIFYING SYSTEM

CLEAR
STORAGE

It
e NN
ST (L

Ik
IRST(LT):Q

[mm‘ (LI} 11 ¢(11Jﬂ

|
|
|
{
: |
|
|
|
|
I

[NRT NI 1]

IF <
IT:N¢§
>

IF <

T I LCH
J




COMPILE FAN-IN LIST,
NFB WITH NO. OF INPUTS,
NI

LCT1=LCT-1

- |
[ DO 11-1, LCT! |e-

IF
1USD(11):0

= le
DO, 12-13, LCT je

ITO(12):IT®(11)

NI(IIO):NI(IIO)ﬂI

IF
NI(110):0

A

[ ~FB(110)=ITO(ID) |

IF
11:LCT1

4

NFI=I10-1
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Lno, NR-1. NRTJ‘—@
v

[ NMBR=IRST(NR) ]

\

|Do. -1, LC

1
Tl

IRL(II, NR):IF
<
>
< IF

IRT.(II. NR)=IFR(I)

IF
II:KNOF

2

2

IRI(II. NR):C

IFR(I):1000

R(I)

v

DO 1. 1-1, NFI

NFB(I1):IFR(I)

[IRL(IL NR)=O |

NMBR=IFR(I)

C
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D¢, 121, LCT

ITO(12):IFR(I)

IBRX(I3)=12
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ﬁL

I
[D¢,15=1, KNOF e

i MI5=KNSF +1-15 |

/A

IF

D¢16=1, NFI |e

1

> [5:KN¢F

VA

NF B(16):IBR(MI5)

IBR(MI5)-0
IDX -IBRX(MI5)+1
IBRX(MI5)=0
erx -IBRX(MI5)+1
; 1
[D¢ 17=IDX, LCT fe
<
IF s IF
IF >
IBR(MI5):0 IBRX(MI5)=I7
<
y
1=17

"
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D¢, INX=1, KNOF [¢

LL(NR)=INX-1 LL(NR)=KNF

I

ITZREL:O

B1=1.0
B2=1.0
B3=1.0
LS=LL(NR)

*
D Mi=1, LS &

'

L$C=IRL(M1, NR)

A

P(LPC, 1, 2)=EXP(P(L$C, 1, 1)%(TO-TM))
P(LPC, 2, 2)=EXP(P(L$C, 2, 1)%(TO-TM))
P(L$C, 3, 2)=EXP(P(L$C, 3, 1)%(TO-TM))
B1=B1x%P(L9C, 1, 2)
B2=B2»P(L$C, 2, 2)
B3=B3x%P(L¢C, 3, 2)

[ R=Rx(B1xB2+B1xB3+B2%B3-2.% B1%B2xB3)|




D $IST=1, KNG F

D¢ IRK=1, 3

v

P(IST, IRK, 2)=EXP(P(IST, IRK, 1)%(TO-T1))
P(IST, IRK, 3)=EXP(P(IST, IRK, 1)%(T1-TM))

iF <
IRK:3
IST:KN$F~
>

rd

chp, IT=1, N'rpj[:

[D$, NR-1, NRT |e

IRST(NR):I TEST(IT)

[L-ITEST(IT, 2) |

D¢ IS=1, LS

[LéC=IRL(S, NR)

IFAIL(L$C, L)=IFAIL(L$C, L)+1
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[ Léc-IRL(S, NR) |

IWPRK(LPC, 1)=1
IWPRK(L$C, 3)=1

E -
>
-

|T¢c:1RL(1s, NR)]

IWPRK(LPC, 2)=1
IWPRK(L$C, 3)-1

| L$C=IRL(IS, NR) ]

IWPRK(LPC, 1)=1

IWSRK(L$C, 2)=1

<

g :
>
=

D¢ NR=1, NRT

D¢ IT=1, NTP

ITEST(IT, 1):IRST(NR)

D¢ I1S=1, LS

[ Léc-1RL(S, NR) |

IUNKN(L$C)=1




A

D¢ IST=1, KNOF
D¢ IRK=1, 3

IFAIL(IST, IRK):O

IFAIL(IST, IRK)=0

IF
IRK:3

IST:KN$F

/A

IF

IPRINT:O

C WRITE IUNKN )
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» D¢, NR=1, NRT

l

LS-LL(NR)

PP(1, NR)=1.
PP(2, NR)=1.
PP(3, NR)=1.

4

A J

D¢1S=1,LS

!

L$C=IRL(IS, NR)

IFAIL(L$C, 1):0

<

~N

PP(1, NR)=PP(1, NR)%P(L%C, 2, 2)

IF
IFAIL(L$C, 2):0

<

| PP(2, NR)=PP(2, NR)%P(L#C, 2, 2)

IF
IFAIL(L$C, 3):0

| PP(3, NR)=PP(3, NR)%P(L#C, 3, 2)
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IF < l
IRK:3 D¢, IST=1, KN¢F
IST:KN¢F D¢, IRK=1, 3

Dé,IST=1, KN$F |
D¢, IRK-1, 3

<
IF x
. IRK:3
<ZIW$RK(IST, IRK):O IST-KNSF
> 2

P(IST, IRK, 2)=1. 0

A

IFAIL(IST, IRK):O

P(IST, IRK, 2)=0.
P(IST, IRK, 3)=0.

TUNKN(IST):O
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11-0
[3=IRK+3

D¢ NR--1, NRT
LS=LL(NR)
D¢IS=1, LS

P(IST, IRK, 2
( ’0 ) ITFST(I. 2):IRK

;

[FAIL(IST, IRK)=IFAIL(IST, IRK)-1

11:11:1

B1-P(IST, IRK, 2)-PP(IRK, NR) < F 2 B1-P(IST, IRK. 2)-PP(I3. NR)
I. -PP(IRK, NR) ‘ 11:2 1. -PP(I3, NR)

14 NR+1 14-NR:1

!

D¢ 12=14, NRT D¢ 12=14. NRT

PP(13. 12). PP(IRK, NR)*B1 PP(13.12)-PP(13, 12)%B1

B{IST, IRK. 2) 5(IST, IRK

P(IST, IRK. 2)
—a <

2 2
| PIST, IRK, 2)=B1 | e { P(IST, IRK, 2)-B1 |

A
IFAIL(IST, IRK
<
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’

WRITE
: SUBSYSTEM
<\I/ PROBABILITIES

PUNT=1.0

CALCULATE U

NTESTED BLOCKS'

RELIABILITIES

D¢, NR=1, NRT

D¢, IT=1,NTP

ITFEST(IT, 1):IRST(NR)

:

P1B=P1B*P(L¢C, 1, 2)
P2B=P2Bx P(L%C, 2, 2)
P3B=P3B*P(L¢C. 3,2)
PI1T=P1T*P(L$C, 1, 3)
P2T=P2T* P(L¢C, 2, 3)
P3T-P3T*P(L¢C. 3,3)

IF <

v

LS=LL({NR)
P1B-1.
P2B-=1.
P3B-1.
PIT-=1.
P2T-1.
P3T-1

OO O O OO0

IS:LS
2

=

PIT=PIT#P1B
P2T-P2T#P2B
P3T=P3T*P3B
PT1 PIT*P2T
PT2=-P1T#P3T
PT3-P2T=P3T
PT4=2. ¢ P1T%xP2T*P3T
PB1-P1B*P2B
PB2:P1BxP3B
PB3-P2B%P3B
PB4=2. x P1B»P2B*P3B
PUNT=PUNT#(PT1+PT2+PT3-PT4)/(PB1+PB2+PB3-PB4)

L$C -IRL(IS. NR)J

>

C

WRITE STAGFE
LOC, MEMBER OF
UNTESTED BLOCK

WRITE PUNT, THE
PRODUCT OF UNTESTED
BLOCK RELIABILITIES

N
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.

CALCULATE TESTED BLOCKS
RELIABILITIES

D¢, IT=1, NTP e

D¢, NR=1, NRT

ITEST(IT, 1):IRST(NR)

<
>

IF <
NR:NRT

D¢, 1S-1. LS

| L$C=IRL(IS, I\E]

IF <

IPRINT:O
\‘/

WRITF STAGF 14C,
MEMBFR OF TFSTED
BLOCK

L
P1-PI%P(L$C. 1. 2)%P(LJC. 1, 3)
P2-P2%P(L$C. 2. 2)%P(LPC, 2, 3)
P3=P3%P(L$C. 3. 2)% P(1$C, 3, 3)

:

PTSTD-PTSTD*(P1%P2+P1%P3+P2%P3-2. 0%P1% P2%P3) I

5 WRITE PTSTD, THE -
PRODUCT OF TESTED IT:NTP

BLOCK RELIABILITIES

A
v

[REL:PUNT*PTS@

®
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S IF

NéV:0

>

[Dé NV-1, N$V |

[L¢C=NVR(Nvﬂ

l

RT1=3.% (P
RT3=2.% (P
RM1=RT1x
RM3=RT3x

L$C, 1,2) xx2,)

L$C,1,2)%x3.)
P(L$C, 1,3)%%2.)
P(L$C, 1, 3)x% 3.)

l

R=R¥%(RM1-RM3)
REL=REL*(RM1-RM3)/(RT1-RT3)

IF <
NV:N¢V

\\"}

- WRITE R, THE

IT ZREL:O
£

~

WRITE REL, THE
RELIABILITY AT TEST TIME
WITH TEST DATA

®

RELIABILITY AT
TIME ZER$, WITH NO
TEST DATA y
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VL.FORTRAN

IV.PROGRAM LISTING

The following pages contain a complete FORTRAN IV listing of the reliability analysis

program.

00100 1.
00100 24
00101 Se
60103 4o
00104 S,
60105 6,
60106 7.
00112 8.
00120 9.
00126 10.
00133 11,
00136 12,
00141 13,
00152 14,
00155 15,
00150 lo,
00le1l 17.
00167 18,
00172 19,
00173 20,
00175 21,
00176 22,
060207 23,
00212 24,
00215 25,
00223 20,
00226 27.
00230 28,
00237 29.
00242 30,
00247 31,
00260 32.
00260 33,
00260 34,
00274 35,
00277 36.
00300 37.
00301 38,
00302 39,
00303 40,
00304 41,
00305 42,
060310 43,
00311 by,
00314 45,
00317 4o,
00320 47,
00323 48,

c

POST TEST

C====<«PROGRAM TO ESTIMATE REDUNDANT SYSTEM RELIABILITY AFTER TESY

400

676

677

675
678

801
601

DIMENSION IRL(150¢75)+IFR(2007,ITOV200)+IRST(75)NFB(150)
DIMENSION NI(150)sIBR(150)¢IBRX(150)LL(75) s NVR(75)r1USD(200)
DIMENSION ITEST(75¢2))IFAIL(150+3)sIWORK(150¢3)»PP(6,75)
DIMENSION TUNKN(150) ¢P(150,3¢3)

READ(5¢301)L.CTYNOF

READ(5¢301) (IFR(IT)»IT=19LCT)

REAL(5¢301) (ITOCIT)»IT=1oLCT)

READ(5¢305)T0,T1eTM

READ(59301) ITZREL

READ(5¢301)INTP

READ(5¢301) ((ITEST(NRINFR) ¢NFR=192) »NRZ1»NTP)
READ(5¢301) IEQULR

KNOF=2%NOF

IF(IEQULR)6T75:675¢676

READ(5¢307) (P(ISTrls1) s IST=1+KNOF)

DO 677 IST=1+KNOF

PUIST»2e1)=P(]ISTrlrl)

PCISTs3¢1)=P(ISTr1r1)

GO TO 678

READ(5¢307) ((PCISTeIRKe1) pIRKZ1,3)sIST=1+KNOF)
READ(50301)NOV

IF(NOV)601+601¢801

READ(5¢301) (NVR(NV) yNV=1sNOV)

READ(5¢301) IPRINT

WRITE(6+309)

WNRITE(62310) (JFR(ID»ITO(I)eIS1LCT)

WRITE (6¢311)NOF

WRITE(6,312)T0»T1»TM
WRITE(6s313)((ITEST(IrJ)eU=102)¢IZ1,NTP)

WRITE(6¢314) (NeP(NeLr1)sP(Ny2)1)sP(Nr3v1)1P(N#NOFo101T+PINENOF22,1

1)P(N+NOF»3+s1) ¢ N=1eNOF)

Cow==eCLEAR STORAGE

108

DO 108 LL1=1+KNOF
IBR(LL1)=0
IBRX(LL1)=0
IRST(LL1)=0
NI(LLL)=0
NFB(LL1)=0
IUSD(LLL1) =0

DO 108 NR=1,NOF
IRST(NR)=0
IRL(LL1/NR) =0

DO B00 IST=1+,KNOF
TIUNKN(IST)=0

DO 800 IRK=1.3
INORK (IST+IRK)=0
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00324
00327
00327
00330
00331
00334
00337
00342
00345
00350
00353
00354
00355
00356
00360
00360
00362
00363
00364
00367
00372
00373
00376
00401
00404
00405
00406
00407
00410
00412
00415
00416
00417
00421
00421
00422
00425
00426
00431
00434
00436
00441
00444
00447
00450
00451
00453
00456
00461
00462
00463
00466
00471
00473
00473
00474
00474
00475
00476
00501
00504
00507
00512
00515
00510
00517
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100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,

800 IFAIL(ISTIRK)=0
RZ1,
Cr=w=aCOMPILE RESTORER LIST
NRT=0
DO 102 IlJ=1.LCT
IF(ITO(IIJ)=NOF)10201029103
103 IF(ITO(ITJ)=1000)104s102r102
104 DO 101 IJ=1,NOF
IF(ITO(ITJ)=IRST(1J))10501020105
105 IF(IRST(1J))106+106,101
106 IRST(IJ)=ITO(IIV)
NRT=NRT+1
GO0 10 102
101 CONTINUE
102 CONTINUE
CmmenaCOMPILE FAN=IN LIST/NFBeWITH NO, OF INPUTSeNI
110=1
LCT1=LCT=-1
DO 908 11=1,LCT1
IF(IUSD(11))901,901,908
901 I3=11+1
DO 906 I2=13,LCT
IF(1ITO(I2)=1TO(11))9069,902,906
902 IF(NI(I10))903,903.904
903 NI(I1l0)=2
G0 TO 905
904 NI(I110)=NI(I110)+1
905 J1USD(I2)=1
906 CONTINUE
IF(NI(110))9069908+907
907 NFB(I110)=ITOo(I1)
110=110+1
906 CONTINUE
NFIzI10=1
Ce====REGIN COMPILING ISOLATED BLOCKS
111 DG 70 NRz=1#NRT
NMBRZIRST(NR)
9 DO 3 I=1.LCT
IF(ITO(I)=NMBR)3r203
3 CONTINUE
2 DO 15 IIz=1»KNOF
IFCIRLUITINR)=IFR(I))1U4r25014
14 IFCIRLIITIINR))ILO6016415
16 IRL(II*NR)=IFR(])

G0 TO 4
15 CONTINUE
4 IF(IFR(I)=NOF)5+50,109

109 IF(IFR(1)=1000)25,110,110

110 IRL(IIYNRI=O
GO TO 2%

5 DO 7 I1=1.NFI
IFINFBUIL)=IFR(I))T7:¢8s7

7 CONTINUE
NMBR=IFR(I)

Cem===IFR IS NOT A FAN=IN STAGE

G0 10 9
C=====]FR IS A FAN=IN STAGE
8 NICIL)=NI(Il)=-1

DO 10 I2=1,LCT
IFCITO(I2)=IFR(I)) 10s11010
11 DO 12 13=1+KNOF
IFCIBROI3Z)=1T0O(12))18¢19,18
18 IF(IBR(13))20,20s12
20 IBR(I3)=1TO0(12)
19 IBRX(13)=12
1=I2




¢

00520
00521
00523
00523
00525
00530
00531
00534
00537
00542
00543
00546
00547
00550
00551
00552
00553
00556
00561
00564
00565
00566
00567
00574
00573
00575
00600
00603
00604
00605
00607
00610
00613
00614
00615
Q0é6loe
00617
00622
00623
00624
00625
00626
00627
00630
00632
00632
00633
00633
00635
Uo6L0
0o6L3
00644
00644
00647
00652
00655
00660
00662
00663
00666
00067
00672
00673
00674
00676
00676

115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
42,
143,
144,
145,
146,
147,
148,
149,
150,
151,
152,
153,
154,
155,
156,
157,
158,
159,
160,
161,
le2,
163,
le4,
165,
le6,
167,
168,
169,
170,
171,
172.
173,
174,
175,
176,
177,
178,
179,
180,

G0 TO 2
12 CONTINUE
10 CONTINUE
CemeaefND OF BRANCH=~-=SEARCH FOR NEXT BRANCH
25 00 26 15=1+KNOF
MIS=KNOF+1~-15
IF(IBR(MIS5))26026027
27 DO 28 I6=1'NFI
IF(NFB(16)=IBR(MI5))28129,28
29 NI(I6)=NI(I6)=1
IF(NI(16))30,30+22
30 IBR(M]IS5)=0
IDX=IBRX(MI5)+1
IBRX(MIS5)=0
GO TO 31
22 IOX=IBRX(MI5)+1
31 DO 32 I7=10XsLCT
IF(ITO(I7)=NFB(16))32+33032
33 IF(IBR{MI5) )35¢35,34
34 IBRX(MIS)=17
35 1=17
GO TO 2
32 CONTINUE
28 CONTINUE
26 CONTINUE
DO 39 INX=1,KNOF
IF(IRLUINX?NR))38038039
38 LLINR)SINX=1
G0 T0O 502
39 CONTINUE
LL (NR)=KNOF
502 IF(ITZREL)70+70+503
505 B1=1,0
B82=1.0
R3=1.,0
LS=LL (NR)
DO 504 M1=1,LS
LOC=IRL (M1¢NR)
P(LOCs1/2)=EXP{P(LOC!1s1)%(TO=TM))
P(LOC,292)SEXP(P(LOCI2¢1)*(TOTM))
P{LOC»392)=EXP(PILOCI3+1)+(TO&TM))
B1=B1*P(L0Cs1,2)
B2=B82%P(L.0C,2,2)
504 B3z=B3*P(L0Cy»3s2)
R=R*(B1xB2+B1+R3+B2+33-2,%B1*B2%B3)
Cee===MAKE IRL LIST FOR NEXT RESTORER ON LIST
70 CONTINUE
Ce==a==COMPUTE PROBS, FOR ALL UNITS
DO 250 IST=1+KNOF
DO 250 IRK=103
P(ISTr»IRKe2)=EXP(P(IST»IRKr1)*(T0=T1))
250 P(ISTsIRK»3)=EXP(P(ISTrIRKe1)%(T31=TM))
C=w=w=FIND ALL TESTED BLOCKS=PUT UNITS IN IWORK OR IFAIL
DO 401 IT=1,NTP
DO 402 NR=1/NRT
IF(IRST(NR)=ITEST(ITr1))402,403,402
402 CONTINUE
403 LS=LL(NR)
IFCITEST(IT2) ) 4040404405
405 LIITEST(1IT»2)
DO 410 IS=1,LS
LOC=IRL(IS'NR)
IFAIL(LOC L)=IFAIL(LOC,L)+1
410 CONTINUE
GO TO 406
Comme=api0 FAILURES IN THIS STRING
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00677
00702
00703
00704
00705
00707
00710
00710
00713
00716
00717
00720
00722
00722
00723
00726
00727
00730
00732
00732
00733
00736
00737
00740
00742
00742
00744
00747
00752
00755
00757
00760
00763
00764
00760
00766
00766
00770
Q0773
00776
01001
01604
01005
01010
01013
01015
01024
01026
01037
olou41l
01041l
0Olo4i
01052
01055
01056
01057
01060
01061
01064
01065
01070
01071
01074
01075
01100
01101
o110l
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181,
182,
183,
184,
185,
186,
187,
188,
189,
190,
191,
192,
193,
194,
195,
196,
197,
198,
199,
200,
201,
202,
203,
204,
205,
206,
207,
208,
209,
210,
2il,
212,
213,
214,
215,
216,
217,
218,
219,
220,
221,
222,
223,
224,
225,
226,
_27,
228,
229,
230,
231,
232,
233,
234,
235,
236,
237.
238,
239.
240,
241,
auz,
243,
244,
245,
246,
247,

404

408

4006

DO 408 IS=1.LS
LOC=IRL(IS'NR)
IWORK (LOC,1)=1
IWORK (LOCr2)=1
IWORK(LOC,»3)=1

GO TO 401
IF(L=2)4140415,4]06

C=e===FAILURE IN RANK ONE

414

409

DU 409 IS=1,LS
LOC=IRL(IS»NR)
IWORK (LOC»,2) =1
IWORK(LOC¢3)=1
GO TO 40}

Co====FAILURE IN RANK TWO

415

420

DO 420 IS=1,LS
LOCZIRL(IS/NR)
IWORK(LOCr1)=1
IWORK (LOC»3)=1
GO TO 401

Co====FAILURE IN RANK THREE

klo

421
401

DO 421 IS=1.LS
LOC=IRL(IS#NR)
IWORK(LOC,1)=1
IWORK(LOC,2)=1
CONTINUE

Co~====FIND ALL UNTESTED BLOCKS==-PUT STAGES IN IUNKN

418

419
417

DO 417 NR=1,NRT

NO 418 IT=1.NTP
[FOITEST(IT»1)~IRST(NR)I418/,417418
CONTINUE

LS=LL(NR)

DO 419 [S=1,LS

LOC=IRL(ISYNR)

TUNKN(LOC) =1

CONTINUE

Cme=m==ALL UNITS ARt ON PROPER LISTS
Com===COMPARE FAILED AND WORKING LISTS

423
424
42z

620

DO 422 IST=1+KNOF

DO 422 IRK=Z1»3

IFCIFAIL(IST»IRK))I4224422,423

IF(IWORK(ISTsIRK))U4224422,U24

IFAIL(IST,IRK)=0

CONTINUE

IF({IPRINT) 621,621,620

WRITE(6,317)

WRITE(6+320) (ISTs IUNKNCIST) o IST=1+KNOF)

WRITE(6,319)
WRITE(6,321)(11+sIWORK(IL1r1) s IWORK(T1,2)»IWORK(I1r3)sT1=1,KNOF)
WRITE(6,318)

WRITE(6,321) (I1oIFAIL(ILe1) o IFAIL(I1»2)IFAIL(I1+3)sI1=1+KNOF)

C-====AlL LISTS COMPARED AND COMPLETED
Co====COMPUTE PROB.PROD.FOR EACH IRL LIST

621

253
254
255
257
256
251

DO 251 NRZ1/NRT

LS=LL(NR)

PP(1/NR)=1.

PP{2/NR) =1,

PP({3sNR)z1.

DO 251 IS=1.LS
LOC=IRL(ISNR)
IF(IFAIL(LOC»1))254,2540253
PP(1/NR)=PP(1)NR) %P (LOCr1,2)
IFCIFAIL(LOCr2))257+2570255
PP(2¢NR}=PP(2,NR) *P (L0OCr2,2)
IFC(IFAIL(LOCs»3))251+2510258
PP(3+NR)=PP(3)NR)*P(LOC»3,2)
CONTINUE

C--===BEGIN COMPUTING RELIABILITIES




01101
01104
01107
01112
01115
01116
01116
1121
01124
01127
01127
01132
01132
01135
01136
01137
01137
01140
01141
uliu42
01145
0liue
ullsl
01154
01157
0lie62
0lle4
01167
01172
01173
01174
01175
01176
01201
01202
01203
oleoe
01210
01211
01212
01213
01214
01217
01221
0le22
01225
ule27
01231
01234
01237
01241
0la4l
01255
01256
012506
01260
01261
0l264
01267
01272
01274
01277
01300
01303
01304
01305

248,
249,
250,
251,
252,
253,
254,
256.
257,
258,
259,
260,
261,
262,
263,
264,
265,
266,
267,
268,
269,
270,
271.
272,
273,
274,
275,
276,
277.
278,
279,
280,
281,
282,
283,
284,
285,
286,
287.
288,
289,
290,
291,
282,
293,
295,
296,
297,
298,
299,
300,
301,
302,
303,
304,
505,
3006,
307,
308,
309.
310,
311,
312,
313,

Cr=v=eCOMPUTE WORKING UNITS RELIABILITIES

434
433

DO 433 IST=1+KNOF

DO 433 IRK=1:3
IFCIWORK(IST»IRK) I4339)433,434
P(ISTsIRKs2)=1,0

CONTINUE

Cme===COMPUTE FAILED UNITS RELIABILITIFES

DO 438 IST=1,kNOF
DO 438 IRK=1+3
IFCIFAIL(IST,IRK))438)438,439

Co-===ONE OR MORE FAILED LISTS

439

IFCIUNKNCIST) )4d41,441)442

Coe====NOT ON UNTESTED LIST

441

PCIST,IRK»2)=0,
PUIST+IRK»3)=0.
GO TO 438

Ce====0ONE OK MORE FAILED LISTS AND UNTESTED LIST

442

510

511
512
513
5ee

523

517

519

518

50

521l
514
515
438
449
622

Coewn==COMPUTE RELIAGILITY OF UNTESTED STRINGS (BLOCKS)

623

451

624
625

I11=0

I3ZIRK+3

DO 515 NR=1,NRT

LS=LL (NR)

DO 514 IS=1,LS
IFUIRLUISINR)=IST)S14,510,514

00 511 1=1+NRT
IF(ITEST(I»1)=IRSTINR))SL11¢512,511
CONTINUE
IFLITEST(I12)=IRK)515,513,515
IF(]1S~1)522,522,523

P(IST,»IRKe2)=0,

GO TO 438
IFAIL(ISTeIRK)SIFAIL(ISTrIRK) «1
11=11+1

IF(I1=2)5%17,518,518
RIZ(P(ISTsIRK2)=PP(IRKsNR))/(1,=PP(IRKsNR))
I4=Nk+1

DO 519 I2=I4¢NRT
PPUI3,I2)=(PP(IRK/NR)*BL)/P(ISTIIRK2)
P(ISTeIRKe2)=pl

GO TO 521
BI=(P(ISTsIRK12)=PP(I3'NR) )/ (1.,=PPTI3iNR))
JT4ZNK+1

DO 520 I2=I4NRT
PP(I3.12)=(PP(13+12)%BL)/PUISTrIRK2)
P(IST»IRKe2) =81
IFCIFATIL(IST»1IRK))IU3B1438,515
CONTINUE

CONTINUE

CONTINUE

IFUIPRINT)623,623r622

WRITE(6,322)

WRITE(69323) (ISTiPUISTe102)sP(ISTs292)¢PISTe302)eP(ISTr1s3)rPLIST

112¢3) 1P (IST3,3) ¢ IST=19KNOF)
I11=0
WRITE(60324)

PUNT=1.0

DO 450 NR=1/,NRT

DO 451 IT=1,NTP
IFCITEST(IT,1)~IRST(NR))IU51,450,451
CONTINUE
IF(IPRINT)625,625r624
11=11+1
WRITE(6,325)11

LS=LL (NR)

P1R=1,0

P2B=1,0
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01306
01307
01310
01311
01312
01315
01316
01321
01324
01325
01326
01327
01330
01331
01333
01334
01335
01336
01337
01340
01341
01342
01343
01344
01345
01346
01347
01352
01355
01355
01357
01360
013563
01364
01366
01371
01574
01377
01401
oluou
01405
01410
01411
01412
01413
0l414
01417
01420
01423
uli426
01427
016430
01432
01433
014306
01441
01441
01443
01444
01447
01452
01453
01454
01455
01456
01457
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314, p38:100

315, P1T=1.0

316, pa2T=1,0

317. P3T=1,.0

318, DO 452 IS=1,LS

319, LOC=IRL(IS/NR)

320, IFUIPRINT)627,627+626

321, 626 WRITE(6»326)L0C

322, 027 PLB=P1B*P(L0OCs1+2)

323, P2B=P2B*P {(L0OCy2+2)

324, P3B=P3B*P(LOC»3+2)

325, PLT=P1T#P(LOC,»1,3)

326, P2T=P2T#P{LOC+2,3)

327. 452 P3T=P3T*P(L0C»3+»3)

328, P1T=P1T*P1B

329, P2T=P2T*P2B

330, P3T=P3T*P3B

331. PT1=P1TxP2T

332, PT2=P1T*P3T

333, PT3=P2T*P3T

334, PT4=P1T*P2T*P3T*2.0

335, PB1z=P1iB»P2B

336, PB2=P1Bx*P3B

337, PB3=P2B*P3B

338, PB4z=P1B*P2ExP3B*2.0

339, PUNT=PUNT*(PT1+PT24PT3=-PT4) /(PR1+PR2+PB3=-PBY)
340, IF(IPRINT)I&50,4500628

341, 628 WRITE(6,327)PUNT

<342, 450 CONTINUE

343, Co===aCOMPUTE RELIABILITY OF TESTED STRINGS (BLOCKS)
bk, PTSTD=1,0

345, IF(IPRINT)630,6300629

346, 629 I11=0

7, WRITE (6, 328)

348, 630 DO 453 IT=1,NTP

349, DO 454 NR=1,NRT

350, IFCITEST(ITs1)=IRST(NR)IUSL4,U455,454
351. 454 CONTINUE

352, 455 IF(IPRINT)632,632+631

353, 631 I1=11+1

354, WRITE(69329)11

355, 632 LS=LL(NR)

356, Pl1=1.,0

357. p2z1.,0

358, P3z1,.0

359, DO 456 15=1,LS

360, LOC=IRL(IS*NR)

361, IF(IPRINT)634,634/9633

362, 633 WRITE(6,326)L0C

363, 634 PL1z=P1#P(LOCr1+2)*P(LLOCr1s3)
364, PR2=P2*%P (L0C»2+2) %P (LOC12+ 3)
365, 456 P3zP3xP(L0C»3+2)2P(LOC13+3)
J6o, PTSTD=PTSTD*(P1xP2+P1*P3+P2xP3=2,0%P1%P2%P3)
367, IF(IPRINT)HS3,453+635

368, 635 WRITE(6+330)PTSTD

369, 453 CONTINUE

370, Come==COMPUTE SYSTEM RELIABILITY AFTER TEST
371, REL=PUNT*PTSTD

372, IF(NOV)U4E0 460,457

373, 457 DO 458 NvV=1,NOV

374, LOC=NVR(NV)

375. RT1=23.%(P(LOCy»192)%%2,)
376, RT3z2,*%(P(LOCs1,2)%23,)
377, RMIZRT1x(P(LOCr1+3)%%2,)
378, RM3ZRT3x(PILOCr1r3) %%x3,)
379, RER* (RM1=RM3)
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01460
01460
olu62
01465
01470
01473
01474
01475
01476
01477
01500
01501
01501
01501
01502
01503
01503
01504
01504
01505
01505
01505
01505
01506
a1506
01507
01507
01510
01511
01512
01513
01514
01515
01516
01516
01516
01516
01617
01520
01520
01521
01522
vl5h22
01523
01524
01524
01525
01525
01526

PHASE
PHASE
PHASE
PHASE
PHASE

UEFLNLF

380, 458 RELzZREL*{RM1«RM3)/(RT1=RT3)

381. C===~«PRINT RESULTS

382, 460 IF(ITZREL)703,703»505

383, 505 WRITE(6:315)R

84, 703 WRITE(6,316)REL

385, GO TO #00

386, 200 FORMAT(10I10)

387, 301 FORMAT(1415)

388, 305 FORMAT(3F10,0)

389, 307 FORMAT(6EL2,.6)

390, 309 FORMAT(31HIPOST-TEST RELIABILITY ANALYSIS///)

391. 310 FORMAT(24H SYSTEM INTERCONNECTIONS?/3X¢4THFROM TO FROM TO FROM
392, 1 70 FROM TO FROM TO/3Xr47Hmmmmea= ———

393, 2= commmen=/(5(16014)))

394, 311 FORMAT(21HOTHIS SYSTEM CONTAINS»I3e1X»9HFUNCTIONS/)

395, 312 FORMAT(12H TIME ZERO 2F9.0/12H TEST TIME =F9,0/15H MISSION TIME =F
396, 16.0//)

397. 313 FORMAT(10H TEST DATA/3Xe BHRESTORER,4X»4HRANK/UX»6HTESTED 18Xs6HFAL
398, 1LED/ (18, 19))

399, 314 FORMAT(19HOUNIT FAILURE RATES//11iX¢30HwemevmcraeafFUNCTIONS~=maceax
400, 1==18X 1 I0H=~m==mmm==eRESTORERS = o ===man==/2X 1 SHSTAGE ¢ 4 X » 6HRANK 1v6X»
401. 26HRANK 296X 9 6HRANK 3¢18X» 6HRANK 1,6Xs6HRANK 206X 6HRANK 3/ (1502X0EL
402, 31.602(E12,6)9E14,6¢2(E1246)))

403, 315 FORMAT(68HOBEFORE TEST»SYSTEM MISSION RELIABILITY (TIME ZERO TO M]
404, 1SSION END)= E12,.6)

405, 316 FORMAT(68HOAFTER TESTs» SYSTEM MISSTON RELIABILITY (TESY TIME TO MI
406, 1SSION END)= El12.46)

407, 317 FORMATI(26HISTAGES IN UNTESTED BLOCKS//)

408, 318 FORMAT(29HLIUNITS IN TESTED FAILED RANKS//)

409, 319 FORMAT(30HIUNITS OBSERVED AS OPERATIONAL//)

410, 320 FORMAT(22H STAGE 1=YES,02NO/€1IT70111))

411, 321 FORMATI(22H STAGE ==RANK===/13Xr9H1 2 3/7(217,214))

412, 322 FORMAT(24H1SUBSYSTEM PROBABILITIES/Y/)

413, 323 FORMAT(11X»30HPROBABILITY OF OPERATION AT T1,10Xs»31HPROBABILITY OF
4is, 1 OPERATION AT TM,/52X+28HGIVEN THAT OPERATIONAL AT T1/6H STAGEr 7X
415. 29 6HRANK 104Xs6HRANK 2/ 4X9»6HRANK 34 14X5s6HRANK 1s4Xe6HRANK 294X s 6HRA
416, 3NK 3//(14e5X13F10.6+10X¢3F10.0))

417, 324 FORMAT(2B8HIUNTESTED BLOCKS RELIABILITY/)

418, 325 FORMAT(19HOUNTESTED BLOCK NO.rI3+31H CONTAINS THE FOLLOWING STAGE
419, 1577}

420, 326 FORMATI(125)

421, 327 FORMAT(55H PRODUCT OF RELIABILITIES OF ALL UNTESTED BLOCKS ABOVE=E
422, 111,6)

423, 328 FORMAT(26H1TESTED BLOCKS RELIABILITY/)

424, 329 FORMAT(17HOTESTED BLOCK NO.s»I3+,31H CONTAINS THE FOLLOWING STAGES/
425, 17)

426, 330 FORMAT(53H PRODUCT OF RELIABILITIES OF ALL TESTED BLOCKS AROVE=E1ll
427, 1,6)

428, END
END OF LISTING, 0 *DIAGNOSTIC* MESSAGE(S),

TIME = 1 SEC.,

TIME = 0 SEC.

TIME = 1 SEC.

TIME = 0 SEC.

TIME = 1 SEC.
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